Skip to main content

Advertisement

Log in

Phase Transformation of Andalusite-Mullite and Its Roles in the Microstructure and Sinterability of Refractory Ceramic

  • Topical Collection: Characterization of Minerals, Metals, and Materials 2017
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Andalusite has been realized as a special mineral for the production of refractory ceramics due to its unique property to automatically decompose into mullite and silica during heating at high temperature. The phase transformation from andalusite to mullite plays a critical role for the effective applications of andalusite. This study investigated the microstructural characteristics and sinterability of andalusite powder during high-temperature decomposition. The andalusite powder was bonded with kaolin and prepared as a cylinder green body at 20 MPa; it was then fired at 1423 K to 1723 K (1150 °C to 1450 °C). The microstructures and mechanical strengths of the sintered ceramics were studied by the compressive test, X-ray diffraction, and scanning electron microscopy. The results showed that newly born mullite appeared as rodlike microcrystals and dispersed around the initial andalusite. At 1423 K (1150 °C), the mullitization of andalusite was started, but the complete mullitization was not found until firing at 1723 K (1450 °C). The compressive strength of the ceramics increased from 93.7 to 294.6 MPa while increasing the fire temperature from 1423 K to 1723 K (1150 °C to 1450 °C). Meanwhile, the bulk density of the ceramics was only slightly changed from 2.15 to 2.19 g/cm3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. H. Schneider, J. Schreuer, and B. Hildmann: J. Eur. Ceram. Soc., 2008, vol. 28, pp. 329–44.

    Article  Google Scholar 

  2. T. Robertson, X. Huang, and R. Kearsey: J. Compos. Mater., 2016, vol. 50, pp. 3719–29.

    Article  Google Scholar 

  3. J. Anggono: J. Teknik Mesin, 2005, vol. 7, pp. 1–6.

    Google Scholar 

  4. D.R. Clarke: Surf. Coat. Technol., 2003, vol. 163, pp. 67–74.

    Article  Google Scholar 

  5. R. Barea, M.R. Osendi, and J.M.F. Ferreira: Acta Mater., 2005, vol. 53, pp. 3313–18.

    Article  Google Scholar 

  6. H. Aydın and R. Gören: Cog. Eng., 2016, vol. 3, pp. 1–10.

    Google Scholar 

  7. L.S. Cividanes, T.M.B. Campos, L.A. Rodrigues, D.D. Brunelli, and G.P. Thim: J. Sol-Gel Sci. Technol., 2010, vol. 55, pp. 111–25.

    Article  Google Scholar 

  8. C.Y. Chen: J. Eur. Ceram. Soc., 2000, vol. 20, pp. 2519–25.

    Article  Google Scholar 

  9. H. Rajaei, I. Mobasherpour, and M. Farvizi: IET Micro Nano Lett., 2016, vol. 11, pp. 465–68.

    Article  Google Scholar 

  10. M. Sardy, A. Arib, K. Abbassi, R. Moussa, and M. Gomina: New J. Glass Ceram., 2012, vol. 2, pp. 121–25.

    Article  Google Scholar 

  11. H. Ashrafi, R. Emadi, and R.Z. Foroushani: Adv. Powder Technol., 2015, vol. 26, pp. 1452–57.

    Article  Google Scholar 

  12. M.F. Serra, M.S. Conconi, M.R. Gauna, G. Suárez, E.F. Aglietti, and N.M. Rendtorff: J. Asian Ceram. Soc., 2016, vol. 4, pp. 61–67.

    Article  Google Scholar 

  13. M.M. Gonon and G. Fantozzi: J. Eur. Ceram. Soc., 2002, vol. 22, pp. 453–61.

    Article  Google Scholar 

  14. P. Dubreuil and V. M. Sobolev: Refract. Ind. Ceram., 1999, vol. 40, pp. 152–58.

    Article  Google Scholar 

  15. B. Li, R. Weng, and X. Zhou: Earth Science Frontiers, 2000, vol. 7, pp. 535–39.

    Google Scholar 

  16. W. Pannhorst and H. Schneider: Mineral. Mag., 1978, vol. 42, pp. 195–98.

    Article  Google Scholar 

  17. J.K. Winter and S. Ghose: Am. Min., 1979, vol. 64, pp. 573–86.

    Google Scholar 

  18. A. Hülsmans, M. Schmücker, W. Mader, and H. Schneider: Am. Mineral., 2000, vol. 85, pp. 980–86.

    Article  Google Scholar 

  19. A. Hülsmans, M. Schmücker, W. Mader, and H. Schneider: Am. Mineral., 2000, vol. 85, pp. 987–92.

    Article  Google Scholar 

  20. S. Aramaki and R. Roy: J. Am. Ceram. Soc., 1962, vol. 45 pp. 229–42.

    Article  Google Scholar 

  21. B. Li, R. Weng, and X. Zhou: Refractories, 1999, vol. 33, pp. 130–32.

    Google Scholar 

  22. C. Sadika, I.E. Amranib, and A. Albizanea: J. Asian Ceram. Soc., 2014, vol. 2, pp. 83–96.

    Article  Google Scholar 

  23. B. Li, R. Weng, and J. Li: Refractories, 1996, pp. 305–07.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bowen Li.

Additional information

Manuscript submitted January 14, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, B., He, M. & Wang, H. Phase Transformation of Andalusite-Mullite and Its Roles in the Microstructure and Sinterability of Refractory Ceramic. Metall Mater Trans A 48, 3188–3192 (2017). https://doi.org/10.1007/s11661-017-4092-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-017-4092-z

Keywords

Navigation