In Situ Studies on Twin-Thickness-Dependent Distribution of Defect Clusters in Heavy Ion-Irradiated Nanotwinned Ag

Abstract

Recent studies have shown that twin boundaries are effective defect sinks in heavy ion irradiated nanotwinned (nt) metals. Prior in situ radiation studies on nt Ag at room temperature indicate that the accumulative defect concentration is higher in center areas in the 60-nm-thick twins, and twin boundaries are distorted and self-heal during the absorption of different types of defect clusters. In this follow-up study, we show that the spatial distribution of accumulative defect concentrations in nt metals has a clear dependence on twin thickness, and in certain cases, the trend of spatial distribution is reversed. Potential mechanisms for the counterintuitive findings are discussed.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. 1.

    S. J. Zinkle, L. E. Seitzman, W. G. Wolfer: Philos. Mag. A, 1987, vol. 55, pp. 111–25.

    Article  Google Scholar 

  2. 2.

    B. N. Singh, S. J. Zinkle: J. Nucl. Mater., 1993, vol. 206, pp. 212–29.

    Article  Google Scholar 

  3. 3.

    B. N. Singh, S. I. Golubov, H. Trinkaus, D. J. Edwards, M. Eldrup: J. Nucl. Mater., 2004, vol. 328, pp. 77–87.

    Article  Google Scholar 

  4. 4.

    R. E. Stoller, G. R. Odette, B. D. Wirth: J. Nucl. Mater., 1997, vol. 251, pp. 49–60.

    Article  Google Scholar 

  5. 5.

    G. R. Odette, M. J. Alinger, B. D. Wirth: Annu. Rev. Mater. Res., 2008, vol. 38, pp. 471–503.

    Article  Google Scholar 

  6. 6.

    R. W. Grimes, R. J. M. Konings, L. Edwards: Nat. Mater., 2008, vol. 7, pp. 683–85.

    Article  Google Scholar 

  7. 7.

    L. K. Mansur, A. F. Rowcliffe, R. K. Nanstad, S. J. Zinkle, W. R. Corwin, R. E. Stoller: J. Nucl. Mater., 2004, vol. 329-333, pp. 166–72.

    Article  Google Scholar 

  8. 8.

    S. J. Zinkle: Phys. Plasmas, 2005, vol. 12, pp. 058101.

    Article  Google Scholar 

  9. 9.

    Y. Chen, K. Y. Yu, Y. Liu, S. Shao, H. Wang, M. A. Kirk, J. Wang, X. Zhang: Nat. Commun., 2015, vol. 6, pp. 7036.

    Article  Google Scholar 

  10. 10.

    Y. Chen, Y. Liu, E. G. Fu, C. Sun, K. Y. Yu, M. Song, J. Li, Y. Q. Wang, H. Wang, X. Zhang: Acta Mater., 2015, vol. 84, pp. 393–404.

    Article  Google Scholar 

  11. 11.

    C. Sun, D. Bufford, Y. Chen, M. A. Kirk, Y. Q. Wang, M. Li, H. Wang, S. A. Maloy, X. Zhang: Sci. Rep., 2014, vol. 4, pp. 3737.

    Google Scholar 

  12. 12.

    M. Song, Y. D. Wu, D. Chen, X. M. Wang, C. Sun, K. Y. Yu, Y. Chen, L. Shao, Y. Yang, K. T. Hartwig, X. Zhang: Acta Mater., 2014, vol. 74, pp. 285–95.

    Article  Google Scholar 

  13. 13.

    M. Caro, W. M. Mook, E. G. Fu, Y. Q. Wang, C. Sheehan, E. Martinez, J. K. Baldwin: A. Caro, Appl. Phys. Lett., 2014, vol. 104, pp. 109–233.

    Article  Google Scholar 

  14. 14.

    K. Y. Yu, D. Bufford, C. Sun, Y. Liu, H. Wang, M. A. Kirk, M. Li, X. Zhang: Nat. Commun., 2013, vol. 4, pp. 1377.

    Article  Google Scholar 

  15. 15.

    C. Sun, M. Song, K. Y. Yu, Y. Chen, M. Kirk, M. Li, H. Wang, X. Zhang: Metall. Trans. A, 2013, vol. 44, pp. 1966–74.

    Article  Google Scholar 

  16. 16.

    K. Y. Yu, Y. Liu, C. Sun, H. Wang, L. Shao, E. G. Fu, X. Zhang: J. Nucl. Mater., 2012, vol. 425, pp. 140–46.

    Article  Google Scholar 

  17. 17.

    M. J. Demkowicz, A. Misra, A. Caro: Curr. Opin. Solid State Mater. Sci., 2012, vol. 16, pp. 101–108.

    Article  Google Scholar 

  18. 18.

    E. M. Bringa, J. D. Monk, A. Caro, A. Misra, L. Zepeda-Ruiz, M. Duchaineau, F. Abraham, M. Nastasi, S. T. Picraux, Y. Q. Wang, D. Farkas: Nano Lett., 2012, vol. 12, pp. 3351–55.

    Article  Google Scholar 

  19. 19.

    Y. Chen, J. Li, K. Y. Yu, H. Wang, M. A. Kirk, M. Li, X. Zhang: Acta Mater., 2016, vol. 111, pp. 148–56.

    Article  Google Scholar 

  20. 20.

    C. Sun, B. P. Uberuaga, L. Yin, J. Li, Y. Chen, M. A. Kirk, M. Li, S. A. Maloy, H. Wang, C. Yu, X. Zhang: Acta Mater., 2015, vol. 95, pp. 156–63.

    Article  Google Scholar 

  21. 21.

    Y. Chen, N. Li, D. C. Bufford, J. Li, K. Hattar, H. Wang, X. Zhang: J. Nucl. Mater., 2016, vol. 475, pp. 274–79.

    Article  Google Scholar 

  22. 22.

    X.-M. Bai, A. F. Voter, R. G. Hoagland, M. Nastasi, B. P. Uberuaga: Science, 2010, vol. 327, pp. 1631–34.

    Article  Google Scholar 

  23. 23.

    B. N. Singh, A. J. E. Foreman: Phil. Mag., 1974, vol. 29, pp. 847–58.

    Article  Google Scholar 

  24. 24.

    W. Z. Han, M. J. Demkowicz, E. G. Fu, Y. Q. Wang, A. Misra: Acta Mater., 2012, vol. 60, pp. 6341–51.

    Article  Google Scholar 

  25. 25.

    C. Jiang, N. Swaminathan, J. Deng, D. Morgan, I. Szlufarska: Mater. Res. Lett., 2014, vol. 2, pp. 100–6.

    Article  Google Scholar 

  26. 26.

    Y. Chen, L. Jiao, C. Sun, M. Song, K. Y. Yu, Y. Liu, M. Kirk, M. Li, H. Wang, X. Zhang: J. Nucl. Mater., 2014, vol. 452, pp. 321–7.

    Article  Google Scholar 

  27. 27.

    K. Y. Yu, C. Sun, Y. Chen, Y. Liu, H. Wang, M. A. Kirk, M. Li, X. Zhang: Philos. Mag., 2013, vol. 93, pp. 3547–62.

    Article  Google Scholar 

  28. 28.

    X. Zhang, N. Li, O. Anderoglu, H. Wang, J. G. Swadener, T. Höchbauer, A. Misra, R. G. Hoagland: Nucl. Instrum. Methods Phys. Res., Sect. B, 2007, vol. 261, pp. 1129–32.

    Article  Google Scholar 

  29. 29.

    A. Misra, M. J. Demkowicz, X. Zhang, R. G. Hoagland: JOM, 2007, vol. 59, pp. 62–65.

    Article  Google Scholar 

  30. 30.

    E. G. Fu, M. Caro, L. A. Zepeda-Ruiz, Y. Q. Wang, K. Baldwin, E. Bringa, M. Nastasi, A. Caro: Appl. Phys. Lett., 2012, vol. 101, pp. 191–607.

    Google Scholar 

  31. 31.

    M. J. Demkowicz, O. Anderoglu, X. Zhang, A. Misra: J. Mater. Res., 2011, vol. 26, pp. 1666–75.

    Article  Google Scholar 

  32. 32.

    M. Niewczas, R. G. Hoagland: Philos. Mag., 2009, vol. 89, pp. 727–46.

    Article  Google Scholar 

  33. 33.

    K. Y. Yu, D. Bufford, F. Khatkhatay, H. Wang, M. A. Kirk, X. Zhang: Scr. Mater., 2013, vol. 69, pp. 385–88.

    Article  Google Scholar 

  34. 34.

    J. Li, K. Y. Yu, Y. Chen, M. Song, H. Wang, M. A. Kirk, M. Li, X. Zhang: Nano Lett., 2015, vol. 15, pp. 2922–27.

    Article  Google Scholar 

  35. 35.

    D. Bufford, H. Wang, X. Zhang: Acta Mater., 2011, vol. 59, pp. 93–101.

    Article  Google Scholar 

  36. 36.

    Zinkle S. J. (2012) Radiation-Induced Effects on Microstructure. In Rudy J. M Konings (ed.). Comprehensive Nuclear Materials, Elsevier, Oxford, p. 65–98.

    Google Scholar 

  37. 37.

    R. Sizmann: J. Nucl. Mater., 1978, vol. 69, pp. 386–412.

    Article  Google Scholar 

Download references

Acknowledgments

We acknowledge the financial support provided by NSF-DMR-Metallic Materials and Nanostructures Program under Grant No. 1643915. HW acknowledges the support from the U.S. Office of Naval Research (N00014-16-1-2778). We also acknowledge the access of microscopes at the Microscopy and Imaging Center at Texas A&M University and the DoE Center for Integrated Nanotechnologies managed by Los Alamos National Laboratory. The IVEM facility at Argonne National Laboratory is supported by DOE-Office of Nuclear Energy.

Author information

Affiliations

Authors

Corresponding author

Correspondence to X. Zhang.

Additional information

Manuscript submitted August 27, 2016.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (MP4 9480 kb)

Supplementary material 2 (MP4 7586 kb)

11661_2016_3895_MOESM3_ESM.tif

Illustration the process for acquiring accumulative defects within 0.005 dpa in thick twins (t ≈ 80 nm) in nt Ag (refer to Suppl. Video 1). (a) Before radition the twin matrix is relatively clean. (b) After radiated for 0.0007 dpa, a few defects were formed. The red circles in (b) indicate those defects captured in the snap shot at the dose of 0.005 dpa (g). The purple circles in (b) indicate the defects which do not overlap with red circles, in other words, those defects generated during 0–0.0007 dpa but disappeared before reached to 0.005 dpa. The same method has been used in (c through f) but the only difference is that the circles from previous stages are also included. For instance, both the red circles (from (g)) and the purple circles (from (b)) are showed in (c), and the green circles indicate those defects generated during 0.0007–0.0016 dpa. Finally, (h) shows the total number of defects that detected during 0–0.005 dpa (Fig. 3e). Here, all colored circles except the red ones were recolored into blue so that the blue circles indicate the overall defects accumulated during 0.005 dpa but not appeared at 0.005 dpa as shown in Fig. 3d. Supplementary material 3 (TIFF 1915 kb)

11661_2016_3895_MOESM4_ESM.tif

Illustration the process for acquiring accumulative defects within 0.005 dpa in thick twins (t ≈ 20 nm) in nt Ag (refer to Suppl. Video 2). The method used is exactly the same as shown in Suppl. Fig. 1. The TEM snapshot at 0 dpa is not shown in this case, and instead, the defect accumulative appearance frequency as a function of its position is plotted here (h). Compare to Fig. 3f, the trend of distribution when t ≈ 20 nm is reversed. Supplementary material 4 (TIFF 2485 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Li, J., Chen, Y., Wang, H. et al. In Situ Studies on Twin-Thickness-Dependent Distribution of Defect Clusters in Heavy Ion-Irradiated Nanotwinned Ag. Metall Mater Trans A 48, 1466–1473 (2017). https://doi.org/10.1007/s11661-016-3895-7

Download citation

Keywords

  • Twin Boundary
  • Dislocation Loop
  • Defect Cluster
  • Twin Thickness
  • Thin Twin