Skip to main content
Log in

Effect of Partitioning Treatment on the Mechanical Property of Fe-0.19C-1.47Mn-1.50Si Steel with Refined Martensitic Microstructure

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

In order to understand the effect of microstructural features on the mechanical property, quenching and partitioning (Q&P) and quenching and tempering (Q&T) treatments were carried out on a cold-rolled low-carbon Fe-0.19C-1.47Mn-1.50Si steel sheet. It has been shown that because of the rolling in advance, the grain size of prior austenite was dramatically reduced, which resulted in a great decrease in martensite packet/block size and an increase in dislocation density in martensite in the as-quenched state. However, there was no obvious change in average lath size. Different from Q&T treatment, Q&P not only stabilized a large amount of retained austenite, but also led to a serious carbon depletion in martensite as revealed by X-ray diffraction and three-dimensional-atom-probe analyses. In Q&T and Q&P samples, refining martensitic microstructure improves both the strength and impact toughness markedly but does not affect the elongation very much. Compared with Q&T sample, Q&P one is softer due to the existence of considerable amount of retained austenite and less carbon content in martensite, i.e., it has higher elongation and impact toughness but lower strength. Analyses indicated that the strength loss caused by carbon depletion in martensite is critical which has even completely covered up the strengthening effect of microstructural refinement. On the other hand, the carbon depletion in martensite is more essential in improving impact toughness, comparing the role of microstructural refinement and the existence of more retained austenite. Through a combination of rolling and Q&P processes, the refined Q&P microstructure was achieved for a greatly improved product of strength and elongation and a much lower ductile-to-brittle transition temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. N. Tsuji, T. Maki: Scripta Mater., 2009, vol. 60, pp. 1044-1049.

    Article  Google Scholar 

  2. R. Song, D. Ponge, D. Raabe: Acta Mater., 2005, vol. 53, pp. 4881-4892.

    Article  Google Scholar 

  3. J. Chakraborty, P.P. Chattopadhyay, D. Bhattacharjee, I. Manna: Metall. Trans. A, 2010, vol. 41, pp. 2871-2879.

    Article  Google Scholar 

  4. X. Huang, S. Morito, N. Hansen, T. Maki: Metall. Trans. A, 2012, vol. 43, pp. 3517-3531.

    Article  Google Scholar 

  5. J. Speer, D. Matlock, B. De Cooman, J. Schroth: Acta Mater., 2003, vol. 51, pp. 2611-2622.

    Article  Google Scholar 

  6. T.Y. Hsu, Z.Y. Xu: Mater. Sci. Forum., 2007, vol. 561-565, pp. 2283-2286.

    Article  Google Scholar 

  7. D.V. Edmonds, K. He, F.C. Rizzo, B.C. De Cooman, D.K. Matlock, J.G. Speer: Mater. Sci. Eng., A, 2006, vol. 438-440, pp. 25-34.

    Article  Google Scholar 

  8. D. Koistinen, R. Marburger: Acta Metall., 1959, vol. 7, pp. 59-60.

    Article  Google Scholar 

  9. S. Morito, H. Tanaka, R. Konishi, T. Furuhara, T. Maki: Acta Mater., 2003, vol. 51, pp. 1789-1799.

    Article  Google Scholar 

  10. S. Morito, J. Nishikawa, T. Maki: ISIJ Int., 2003, vol. 43, pp. 1475-1477.

    Article  Google Scholar 

  11. D. Webster: ASM Trans. Quart., 1968, vol. 61, pp. 816–828.

    Google Scholar 

  12. V.F. Zackay, E.P. Parker, D. Fahr, R. Busch: ASM Trans. Quart., 1967, vol. 60, pp. 252–259.

    Google Scholar 

  13. K. Zhang, M. Zhang, Z. Guo, N. Chen, Y. Rong: Mater. Sci. Eng., A, 2011, vol. 528, pp. 8486-8491.

    Article  Google Scholar 

  14. D.W. Kim, B.C. Suh, M.S. Shim, J. Bae, D. Kim, N.J. Kim: Metall. Trans. A, 2013, vol. 44, pp. 2950-2961.

    Article  Google Scholar 

  15. M.C. Somani, D.A. Porter, L.P. Karjalainen, D.K. Misra: Mater. Sci. Forum., 2013, vol. 762, pp. 83-88.

    Article  Google Scholar 

  16. A.R. Stokes: Proc. Phys. Soc., 1948, vol. 61, pp. 382–391.

    Article  Google Scholar 

  17. M.J. Santofimia, L. Zhao, R. Petrov, C. Kwakernaak, W.G. Sloof, J. Sietsma: Acta Mater., 2011, vol. 59, pp. 6059-6068.

    Article  Google Scholar 

  18. M. Dickson: J. Appl. Crystallogr., 1969, vol. 2, pp. 176-180.

    Article  Google Scholar 

  19. W. Li, W. Xu, X. Wang, Y. Rong: J. Alloys Compd., 2009, vol. 474, pp. 546-550.

    Article  Google Scholar 

  20. C. Liu, Z. Zhao, D.O. Northwood, Y. Liu: J. Mater. Process. Tech., 2001, vol. 113, pp. 556-562.

    Article  Google Scholar 

  21. Y. Toji, H. Matsuda, M. Herbig, P.P. Choi, D. Raabe: Acta Mater., 2014, vol. 65, pp. 215-228.

    Article  Google Scholar 

  22. C.H. Young, H. Bhadeshia: Mater. Sci. Technol., 1994, vol. 10, pp. 209-214.

    Article  Google Scholar 

  23. B. Hutchinson, J. Hagström, O. Karlsson, D. Lindell, M. Tornberg, F. Lindberg, M. Thuvander: Acta Mater., 2011, vol. 59, pp. 5845-5858.

    Article  Google Scholar 

  24. S. Morito, H. Yoshida, T. Maki, X. Huang: Mater. Sci. Eng., A, 2006, vol. 438-440, pp. 237-240.

    Article  Google Scholar 

  25. D.A. Hughes, N. Hansen: Acta Mater., 2000, vol. 48, pp. 2985-3004.

    Article  Google Scholar 

  26. W. Mills: Int. Mater. Rev., 1997, vol. 42, pp. 45-82.

    Article  Google Scholar 

  27. J. Koo, M. Young, G. Thomas: Metall. Trans. A, 1980, vol. 11, pp. 852-854.

    Article  Google Scholar 

  28. H.K.D.H. Bhadeshia: ISIJ Int., 2002, vol. 42, pp. 1059-1060.

    Article  Google Scholar 

  29. S. Zhou, K. Zhang, Y. Wang, J.F. Gu, Y.H. Rong: Metall. Trans. A, 2011, vol. 43, pp. 1026-1034.

    Article  Google Scholar 

  30. M. Saeglitz, G. Krauss: Metall. Trans. A, 1997, vol. 28, pp. 377-387.

    Article  Google Scholar 

  31. G. Krauss: Metall. Trans. A, 2001, vol. 32, pp. 861-877.

    Article  Google Scholar 

  32. C. Wang, M. Wang, J. Shi, W. Hui, H. Dong: Scripta Mater., 2008, vol. 58, pp. 492-495.

    Article  Google Scholar 

  33. M. Milititsky, D.K. Matlock, A. Regully, N. Dewispelaere, J. Penning, H. Hanninen: Mater. Sci. Eng., A, 2008, vol. 496, pp. 189-199.

    Article  Google Scholar 

  34. M. Tanaka, C.S. Choi, Y. Kojima: Trans. ISIJ, 1974, vol. 14, pp. 101-117.

    Google Scholar 

  35. R.O. Ritchie: Nature Mater., 2011, vol. 10, pp. 817-822.

    Article  Google Scholar 

  36. F. Huang, L. Yang, Y. Rong, Z. Guo: Mater. Res. Innov., 2015, vol. 19, pp. S54-S58.

    Article  Google Scholar 

Download references

Acknowledgment

This work was financially supported by the National Natural Science Foundation of China (NSFC) under Grant Nos. 51071101 and 51371117.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhenghong Guo.

Additional information

Manuscript submitted May 18, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, F., Yang, J., Guo, Z. et al. Effect of Partitioning Treatment on the Mechanical Property of Fe-0.19C-1.47Mn-1.50Si Steel with Refined Martensitic Microstructure. Metall Mater Trans A 47, 1072–1082 (2016). https://doi.org/10.1007/s11661-015-3278-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-015-3278-5

Keywords

Navigation