Skip to main content
Log in

Role of the Molar Volume on Estimated Diffusion Coefficients

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The role of the molar volume on the estimated diffusion parameters has been speculated for decades. The Matano–Boltzmann method was the first to be developed for the estimation of the variation of the interdiffusion coefficients with composition. However, this could be used only when the molar volume varies ideally or remains constant. Although there are no such systems, this method is still being used to consider the ideal variation. More efficient methods were developed by Sauer–Freise, Den Broeder, and Wagner to tackle this problem. However, there is a lack of research indicating the most efficient method. We have shown that Wagner’s method is the most suitable one when the molar volume deviates from the ideal value. Similarly, there are two methods for the estimation of the ratio of intrinsic diffusion coefficients at the Kirkendall marker plane proposed by Heumann and van Loo. The Heumann method, like the Matano–Boltzmann method, is suitable to use only when the molar volume varies more or less ideally or remains constant. In most of the real systems, where molar volume deviates from the ideality, it is safe to use the van Loo method. We have shown that the Heumann method introduces large errors even for a very small deviation of the molar volume from the ideal value. On the other hand, the van Loo method is relatively less sensitive to it. Overall, the estimation of the intrinsic diffusion coefficient is more sensitive than the interdiffusion coefficient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. F.J.J. van Loo: Prog. Solid State Chem., 1990, vol. 20, pp. 47–99.

    Article  Google Scholar 

  2. C. Matano: Jpn. J. Phys., 1933, vol. 8, pp. 109–13.

    Google Scholar 

  3. F. Sauer and V. Freise: Z. Elektrochem. Angew. Phys. Chem., 1962, vol. 66, pp. 353–63.

    Article  Google Scholar 

  4. F.J.A. den Broeder: Scripta Metall., 1969, vol. 3, no. 5, pp. 321–25.

    Article  Google Scholar 

  5. C. Wagner: Acta Metall., 1979, vol. 17, pp. 99–107.

    Article  Google Scholar 

  6. T. Heumann: Z. Physik Chem., 1952, vol. 201, pp. 168–89.

    Google Scholar 

  7. F.J.J. van Loo: Acta Metall., 1970, vol. 18, pp. 1107–11.

    Article  Google Scholar 

  8. A. Paul, A.A. Kodentsov, and F.J.J. van Loo: J. Alloys Compd., 2005, vol. 403, pp. 147–53.

    Article  Google Scholar 

  9. N.J. Pugh, J.L.M. Robertson, E.R. Wallach, J.R. Cave, R.E. Somekh, and J.E. Evetts: IEEE Trans. Magn., 1985, vol. MAG21, pp. 1129–32.

  10. Z.S. Mei, A. J. Sunwoo, and J.W. Morris: Metall. Trans. A, 1992, vol. 23A, pp. 857–64.

    Article  Google Scholar 

  11. W. Beele, G. Marrijnissen, and A. van Lieshout: Surf. Coat. Techol., 1999, vol. 120-121, pp. 61–67.

    Article  Google Scholar 

  12. A. Paul, T. Laurila, V. Vuorinen, and S. Divinski: Thermodynamics, Diffusion and the Kirkendall Effect in Solids, Springer, Heidelberg, 2014.

    Book  Google Scholar 

  13. S. Brennan, K. Bermudez, N.S. Kulkarni, and Y. Sohn: Metall. Mater. Trans. A, 2012, vol. 43A, pp. 4043–52.

    Article  Google Scholar 

  14. V.D. Divya, U. Ramamurty, and A. Paul: Intermetallics, 2010, vol. 18, pp. 259–66.

    Article  Google Scholar 

  15. M.Vach and M. Svojtka: Metall. Mater. Trans. B, 2012, vol. 43B, pp. 1446–53.

    Article  Google Scholar 

  16. S.K. Kailasam, J.C. Lacombe, and M.E. Glicksman: Mater. Trans. A, 1999, vol. 30A, pp. 2605–10.

    Article  Google Scholar 

  17. A. Paul: Ph.D. Thesis, Technische Universiteit Eindhoven, The Netherlands, 2004.

  18. J. Philibert: Atom Movements: Diffusion and Mass Transport in Solids, 1991, Éditions de Physique, Les Ulis.

    Google Scholar 

  19. S. Santra and A. Paul: Phil. Mag. Lett., 2014, vol. 94, pp. 487–94.

    Article  Google Scholar 

  20. B.N. Das, J.E. Cox, R.W. Huber, and R.A. Meussner: Mater. Trans. A, 1977, vol. 8A, pp. 541–52.

    Article  Google Scholar 

Download references

Acknowledgment

A. Paul would like to acknowledge the financial support from SERB, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aloke Paul.

Additional information

Manuscript submitted January 15, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Santra, S., Paul, A. Role of the Molar Volume on Estimated Diffusion Coefficients. Metall Mater Trans A 46, 3887–3899 (2015). https://doi.org/10.1007/s11661-015-2988-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-015-2988-z

Keywords

Navigation