Skip to main content

The Effect of the Amorphous and Crystalline States on Preferential Corrosion of Hf from a Cu75Hf20Dy05 Alloy

Abstract

Amorphous solid-solution Cu75Hf20Dy05, which undergoes devitrification without changing composition either locally or globally, was used to examine the effects of structural ordering on corrosion properties in the absence of any accompanying chemical partitioning. Melt spun amorphous Cu75Hf20Dy05 undergoes single-phase devitrification to a Cu51Hf14 phase. The difference in corrosion behavior between these two structures was explored in hydrofluoric acid solutions where preferential dissolution of hafnium occurred. Preferential Hf dissolution occurred more readily in the amorphous alloy compared with its crystalline counterpart. Remaining copper reorganized to form a face-centered cubic (fcc) nanostructure in both conditions, but this process occurred quickly in the amorphous state and more slowly in the crystalline variant. A uniform, nanoporous Cu sponge structure, with a pore diameter of approximately 10 nm, formed after dissolution in the amorphous state. A less uniform, nanoporous structure developed more slowly when occurring from the crystalline state. These differences were traced to the effects of ordering on both dissolution and surface diffusion.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

References

  1. P. Campestrini, E.P.M. van Westing, H.W. van Rooijen, and J.H.W. de Wit: Corrosion Sci., 2000, vol. 42, pp. 1853–61.

    Article  CAS  Google Scholar 

  2. G.O. Ilevbare, O. Schneider, R.G. Kelly. and J.R. Scully: J. Electrochem. Soc., 2004, vol. 151, pp. B453–64.

    Article  CAS  Google Scholar 

  3. D.E. Williams, T.F. Mohiuddin, and Y.Y. Zhu: J. Electrochem. Soc., 1998, vol. 145, pp. 2664–72.

    Article  CAS  Google Scholar 

  4. J.R. Scully and A.M. Lucente: ASM Handbook, vol. 13B, ASM International, Materials Park, OH, 2005.

  5. R. Huang, D.J. Horton, F. Bocher, and J.R. Scully: Corrosion, 2010, vol. 66, pp. 642–49.

    Google Scholar 

  6. J.R. Scully, A. Gebert, and J.H. Payer: J. Mater. Res., 2007, vol. 22, pp. 302–13.

    Article  CAS  Google Scholar 

  7. T. Aburada, N. Unlu, J.M. Fitz-Gerald, G.J. Shiflet, and J.R. Scully: Scripta Mater., 2008, vol. 58, pp. 623–26.

    Article  CAS  Google Scholar 

  8. K. Hashimoto, K. Osada, T. Masumoto, and S. Shimodaira: Corrosion Sci., 1976, vol. 16, pp. 71–76.

    Article  CAS  Google Scholar 

  9. D. Huerta and K.E. Heusler: J. Non-Cryst. Solids, 1983, vol. 56, pp. 261–66.

    Article  CAS  Google Scholar 

  10. M. Naka, K. Hashimoto, and T. Masumoto: J. Non-Cryst. Solids, 1978, vol. 30, pp. 29–36.

    Article  CAS  Google Scholar 

  11. M. Naka, K. Hashimoto, and T. Masumoto: Corrosion, 1980, vol. 36, pp. 679–86.

    CAS  Google Scholar 

  12. H.S. Tong: Corrosion, 1985, vol. 41, pp. 10–12.

    Article  CAS  Google Scholar 

  13. J.C. Turn and R.M. Latanision: Corrosion, 1983, vol. 39, pp. 271–79.

    Article  CAS  Google Scholar 

  14. Z.M. Wang, J. Zhang, X.C. Chang, W.L. Hou, and J.Q. Wang: Corrosion Sci., 2010, vol. 52, pp. 1342–50.

    Article  CAS  Google Scholar 

  15. B.W. Parks, J.D. Fritz, and H.W. Pickering: Scripta Metall., 1989, vol. 23, pp. 951–56.

    Article  CAS  Google Scholar 

  16. F.U. Renner, A. Stierle, H. Dosch, D.M. Kolb, T.L. Lee, and J. Zegenhagen: Phys. Rev. B, 2008, vol. 77, p. 5433.

    Article  Google Scholar 

  17. Y. Ding, M.W. Chen, and J. Erlebacher: J. Am. Chem. Soc., 2004, vol. 126, pp. 6876–77.

    Article  CAS  Google Scholar 

  18. S. Koh and P. Strasser: J. Am. Chem. Soc., 2007, vol. 129, p. 12624.

    Article  CAS  Google Scholar 

  19. M. Hakamada and M. Mabuchi: J. Alloys Compd., 2009, vol. 485, pp. 583–87.

    Article  CAS  Google Scholar 

  20. J.R. Hayes, A.M. Hodge, J. Biener, A.V. Hamza, and K. Sieradzki: J. Mater. Res., 2006, vol. 21, pp. 2611–16.

    Article  CAS  Google Scholar 

  21. T. Aburada, J.M. Fitz-Gerald, and J.R. Scully: Corrosion Sci., 2011, vol. 53, pp. 1627–32.

    Article  CAS  Google Scholar 

  22. H. Abe, K. Sato, H. Nishikawa, T. Takemoto, M. Fukuhara, and A. Inoue: Metall. Trans., 2009, vol. 50, pp. 1255–58.

    CAS  Google Scholar 

  23. W.J. James, J.W. Johnson, and M.E. Straumanis: Corrosion Sci., 1963, vol. 3, pp. 273–79.

    Article  CAS  Google Scholar 

  24. B.D. Craig: Handbook of Corrosion Data, 2nd ed., Materials Data Series. ASM International, 1995, Materials Park, OH, p. 998.

  25. CRC Handbook of Chemistry and Physics, CRC Press, Boca Raton, FL, 1999.

  26. I. Puigdomenech: MEDUSA: Make Equilibrium Diagrams Using Sophisticated Algorithms, Royal Institute of Technology; Stockholm, Sweden, 2009. http://www.kemi.kth.se/medusa/.

  27. W.J. James, W.G. Custead, and M.E. Straumanis: Corrosion Sci., 1962, vol. 2, pp. 237–54.

    Article  CAS  Google Scholar 

  28. C.E.F. Rickard and T.N. Waters: J. Inorg. Nucl. Chem., 1964, vol. 26, pp. 925–30.

    Article  CAS  Google Scholar 

  29. J.P. Gabathuler, P. White, and E. Parthe: Acta Cryst. Section B-Struct. Sci., 1975, vol. 31B, pp. 608–10.

    Article  Google Scholar 

  30. H. Okamoto: J. Phase Equilib. Diffus., 2007, vol. 28, pp. 583–84.

    Article  CAS  Google Scholar 

  31. M. Pourbaix: Atlas of Electrochemical Equilibria in Aqueous Solutions, National Association of Corrosion Engineers, Houston, TX, 1974.

  32. J. Erlebacher: J. Electrochem. Soc., 2004, vol. 151, pp. C614–26.

    Article  CAS  Google Scholar 

  33. P.R. Subramanian and D.E. Laughlin: Bull. Alloy Phase Diagrams, 1988, vol. 9, pp. 331–408.

    Google Scholar 

  34. A.S. Dalton, D. Llera-Hurlburt, and E.G. Seebauer: Surf. Sci., 2001, vol. 494, pp. L761–66.

    Article  CAS  Google Scholar 

  35. D. Llera-Hurlburt, A.S. Dalton, and E.G. Seebauer: Surf. Sci., 2002, vol. 504, pp. 244–52.

    Article  CAS  Google Scholar 

  36. P. Stoltze: J. Phys.-Condens. Mat., 1994, vol. 6, pp. 9495–517.

    Article  Google Scholar 

  37. I. Avramov: J. Phys.-Condens. Mat., 1999, vol. 11, pp. L267–72.

    Article  CAS  Google Scholar 

  38. A.S. Dalton, Y.V. Kondratenko, and E.G. Seebauer: Chem. Eng. Sci., 2010, vol. 65, pp. 2172–76.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants DMR-0504983 and DMR-0906663 from the National Science Foundation (Dr. Alan J. Ardell, contract monitor). Profs. John H. Perepezko, Gary J. Shiflet, and S. Joseph Poon are thanked for help with materials fabrication and helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. J. Horton.

Additional information

Manuscript submitted March 29, 2011.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Horton, D.J., Scully, J.R. The Effect of the Amorphous and Crystalline States on Preferential Corrosion of Hf from a Cu75Hf20Dy05 Alloy. Metall Mater Trans A 43, 2706–2720 (2012). https://doi.org/10.1007/s11661-011-1065-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-011-1065-5

Keywords

  • Amorphous Alloy
  • Surface Diffusion
  • Cathodic Current Density
  • ZrF4
  • Cyclic Polarization