Metallurgical and Materials Transactions A

, Volume 43, Issue 8, pp 2706–2720 | Cite as

The Effect of the Amorphous and Crystalline States on Preferential Corrosion of Hf from a Cu75Hf20Dy05 Alloy

  • D. J. HortonEmail author
  • J. R. Scully
Symposium: Bulk Metallic Glasses VIII


Amorphous solid-solution Cu75Hf20Dy05, which undergoes devitrification without changing composition either locally or globally, was used to examine the effects of structural ordering on corrosion properties in the absence of any accompanying chemical partitioning. Melt spun amorphous Cu75Hf20Dy05 undergoes single-phase devitrification to a Cu51Hf14 phase. The difference in corrosion behavior between these two structures was explored in hydrofluoric acid solutions where preferential dissolution of hafnium occurred. Preferential Hf dissolution occurred more readily in the amorphous alloy compared with its crystalline counterpart. Remaining copper reorganized to form a face-centered cubic (fcc) nanostructure in both conditions, but this process occurred quickly in the amorphous state and more slowly in the crystalline variant. A uniform, nanoporous Cu sponge structure, with a pore diameter of approximately 10 nm, formed after dissolution in the amorphous state. A less uniform, nanoporous structure developed more slowly when occurring from the crystalline state. These differences were traced to the effects of ordering on both dissolution and surface diffusion.


Amorphous Alloy Surface Diffusion Cathodic Current Density ZrF4 Cyclic Polarization 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by grants DMR-0504983 and DMR-0906663 from the National Science Foundation (Dr. Alan J. Ardell, contract monitor). Profs. John H. Perepezko, Gary J. Shiflet, and S. Joseph Poon are thanked for help with materials fabrication and helpful discussions.


  1. 1.
    P. Campestrini, E.P.M. van Westing, H.W. van Rooijen, and J.H.W. de Wit: Corrosion Sci., 2000, vol. 42, pp. 1853–61.CrossRefGoogle Scholar
  2. 2.
    G.O. Ilevbare, O. Schneider, R.G. Kelly. and J.R. Scully: J. Electrochem. Soc., 2004, vol. 151, pp. B453–64.CrossRefGoogle Scholar
  3. 3.
    D.E. Williams, T.F. Mohiuddin, and Y.Y. Zhu: J. Electrochem. Soc., 1998, vol. 145, pp. 2664–72.CrossRefGoogle Scholar
  4. 4.
    J.R. Scully and A.M. Lucente: ASM Handbook, vol. 13B, ASM International, Materials Park, OH, 2005.Google Scholar
  5. 5.
    R. Huang, D.J. Horton, F. Bocher, and J.R. Scully: Corrosion, 2010, vol. 66, pp. 642–49.Google Scholar
  6. 6.
    J.R. Scully, A. Gebert, and J.H. Payer: J. Mater. Res., 2007, vol. 22, pp. 302–13.CrossRefGoogle Scholar
  7. 7.
    T. Aburada, N. Unlu, J.M. Fitz-Gerald, G.J. Shiflet, and J.R. Scully: Scripta Mater., 2008, vol. 58, pp. 623–26.CrossRefGoogle Scholar
  8. 8.
    K. Hashimoto, K. Osada, T. Masumoto, and S. Shimodaira: Corrosion Sci., 1976, vol. 16, pp. 71–76.CrossRefGoogle Scholar
  9. 9.
    D. Huerta and K.E. Heusler: J. Non-Cryst. Solids, 1983, vol. 56, pp. 261–66.CrossRefGoogle Scholar
  10. 10.
    M. Naka, K. Hashimoto, and T. Masumoto: J. Non-Cryst. Solids, 1978, vol. 30, pp. 29–36.CrossRefGoogle Scholar
  11. 11.
    M. Naka, K. Hashimoto, and T. Masumoto: Corrosion, 1980, vol. 36, pp. 679–86.Google Scholar
  12. 12.
    H.S. Tong: Corrosion, 1985, vol. 41, pp. 10–12.CrossRefGoogle Scholar
  13. 13.
    J.C. Turn and R.M. Latanision: Corrosion, 1983, vol. 39, pp. 271–79.CrossRefGoogle Scholar
  14. 14.
    Z.M. Wang, J. Zhang, X.C. Chang, W.L. Hou, and J.Q. Wang: Corrosion Sci., 2010, vol. 52, pp. 1342–50.CrossRefGoogle Scholar
  15. 15.
    B.W. Parks, J.D. Fritz, and H.W. Pickering: Scripta Metall., 1989, vol. 23, pp. 951–56.CrossRefGoogle Scholar
  16. 16.
    F.U. Renner, A. Stierle, H. Dosch, D.M. Kolb, T.L. Lee, and J. Zegenhagen: Phys. Rev. B, 2008, vol. 77, p. 5433.CrossRefGoogle Scholar
  17. 17.
    Y. Ding, M.W. Chen, and J. Erlebacher: J. Am. Chem. Soc., 2004, vol. 126, pp. 6876–77.CrossRefGoogle Scholar
  18. 18.
    S. Koh and P. Strasser: J. Am. Chem. Soc., 2007, vol. 129, p. 12624.CrossRefGoogle Scholar
  19. 19.
    M. Hakamada and M. Mabuchi: J. Alloys Compd., 2009, vol. 485, pp. 583–87.CrossRefGoogle Scholar
  20. 20.
    J.R. Hayes, A.M. Hodge, J. Biener, A.V. Hamza, and K. Sieradzki: J. Mater. Res., 2006, vol. 21, pp. 2611–16.CrossRefGoogle Scholar
  21. 21.
    T. Aburada, J.M. Fitz-Gerald, and J.R. Scully: Corrosion Sci., 2011, vol. 53, pp. 1627–32.CrossRefGoogle Scholar
  22. 22.
    H. Abe, K. Sato, H. Nishikawa, T. Takemoto, M. Fukuhara, and A. Inoue: Metall. Trans., 2009, vol. 50, pp. 1255–58.Google Scholar
  23. 23.
    W.J. James, J.W. Johnson, and M.E. Straumanis: Corrosion Sci., 1963, vol. 3, pp. 273–79.CrossRefGoogle Scholar
  24. 24.
    B.D. Craig: Handbook of Corrosion Data, 2nd ed., Materials Data Series. ASM International, 1995, Materials Park, OH, p. 998.Google Scholar
  25. 25.
    CRC Handbook of Chemistry and Physics, CRC Press, Boca Raton, FL, 1999.Google Scholar
  26. 26.
    I. Puigdomenech: MEDUSA: Make Equilibrium Diagrams Using Sophisticated Algorithms, Royal Institute of Technology; Stockholm, Sweden, 2009.
  27. 27.
    W.J. James, W.G. Custead, and M.E. Straumanis: Corrosion Sci., 1962, vol. 2, pp. 237–54.CrossRefGoogle Scholar
  28. 28.
    C.E.F. Rickard and T.N. Waters: J. Inorg. Nucl. Chem., 1964, vol. 26, pp. 925–30.CrossRefGoogle Scholar
  29. 29.
    J.P. Gabathuler, P. White, and E. Parthe: Acta Cryst. Section B-Struct. Sci., 1975, vol. 31B, pp. 608–10.CrossRefGoogle Scholar
  30. 30.
    H. Okamoto: J. Phase Equilib. Diffus., 2007, vol. 28, pp. 583–84.CrossRefGoogle Scholar
  31. 31.
    M. Pourbaix: Atlas of Electrochemical Equilibria in Aqueous Solutions, National Association of Corrosion Engineers, Houston, TX, 1974.Google Scholar
  32. 32.
    J. Erlebacher: J. Electrochem. Soc., 2004, vol. 151, pp. C614–26.CrossRefGoogle Scholar
  33. 33.
    P.R. Subramanian and D.E. Laughlin: Bull. Alloy Phase Diagrams, 1988, vol. 9, pp. 331–408.Google Scholar
  34. 34.
    A.S. Dalton, D. Llera-Hurlburt, and E.G. Seebauer: Surf. Sci., 2001, vol. 494, pp. L761–66.CrossRefGoogle Scholar
  35. 35.
    D. Llera-Hurlburt, A.S. Dalton, and E.G. Seebauer: Surf. Sci., 2002, vol. 504, pp. 244–52.CrossRefGoogle Scholar
  36. 36.
    P. Stoltze: J. Phys.-Condens. Mat., 1994, vol. 6, pp. 9495–517.CrossRefGoogle Scholar
  37. 37.
    I. Avramov: J. Phys.-Condens. Mat., 1999, vol. 11, pp. L267–72.CrossRefGoogle Scholar
  38. 38.
    A.S. Dalton, Y.V. Kondratenko, and E.G. Seebauer: Chem. Eng. Sci., 2010, vol. 65, pp. 2172–76.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2012

Authors and Affiliations

  1. 1.Center for Electrochemical Science and Engineering, Department of Materials Science and EngineeringUniversity of VirginiaCharlottesvilleUSA

Personalised recommendations