Skip to main content
Log in

Changes in femoral bone mineral density after total knee arthroplasty: a systematic review and meta-analysis

  • Review Article
  • Published:
Archives of Osteoporosis Aims and scope Submit manuscript

Abstract

Background

Bone loss after total knee arthroplasty (TKA) may lead to periprosthetic fractures that are associated with significant costs (morbidity, economic, etc.) and pose a challenge to operative fixation. This meta-analysis quantifies the change in bone mineral density (BMD) of the distal femur after primary TKA.

Methods

A systematic review of six databases was performed by two independent reviewers. Studies that reported bone density after knee arthroplasty were identified and inclusion/exclusion criteria was applied. Data were extracted and analyzed using the Comprehensive Meta-Analysis Software.

Results

Fourteen studies were included in the analysis. The average decrease in BMD was 0.09 [0.05, 0.13], 0.14 [0.08, 0.20], 0.16 [0.10, 0.23], and 0.16 [0.12, 0.20] g/cm2 at 3, 6, 12, and 24 months, respectively, corresponding to a 9.3%, 13.2%, 15.8%, and 15.4% BMD loss. A high degree of heterogeneity existed between the studies (I2 > 90% at most time points).

Conclusion

In summary, there is a rapid and significant 15% decrease in BMD in the first 6 months after TKA that is sustained to 24 months. Better understanding regarding how perioperative optimization of bone health may affect BMD loss and the incidence of periprosthetic fracture is essential.

Level of evidence

Therapeutic Level II.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Maradit Kremers H, Larson DR, Crowson CS, Kremers WK, Washington RE, Steiner CA, Jiranek WA, Berry DJ (2015) Prevalence of Total hip and knee replacement in the United States. J Bone Joint Surg Am 97:1386–1397. https://doi.org/10.2106/JBJS.N.01141

    Article  PubMed  PubMed Central  Google Scholar 

  2. Bozic KJ, Kamath AF, Ong K, Lau E, Kurtz S, Chan V, Vail TP, Rubash H, Berry DJ (2015) Comparative epidemiology of revision arthroplasty: failed THA poses greater clinical and economic burdens than failed TKA. Clin Orthop Relat Res 473:2131–2138. https://doi.org/10.1007/s11999-014-4078-8

    Article  PubMed  Google Scholar 

  3. Singh JA, Jensen M, Lewallen D (2013) Predictors of periprosthetic fracture after total knee replacement. Acta Orthop 84:170–177. https://doi.org/10.3109/17453674.2013.788436

    Article  PubMed  PubMed Central  Google Scholar 

  4. Canton G, Ratti C, Fattori R, Hoxhaj B, Murena L (2017) Periprosthetic knee fractures. A review of epidemiology, risk factors, diagnosis, management and outcome. Acta Biomed 88:118–128

    PubMed  PubMed Central  Google Scholar 

  5. Lin T, Yan S-G, Cai X-Z, Ying Z-M (2012) Bisphosphonates for periprosthetic bone loss after joint arthroplasty: a meta-analysis of 14 randomized controlled trials. Osteoporos Int 23:1823–1834. https://doi.org/10.1007/s00198-011-1797-5

    Article  CAS  PubMed  Google Scholar 

  6. Labuda A, Papaioannou A, Pritchard J, Kennedy C, DeBeer J, Adachi JD (2008) Prevalence of osteoporosis in osteoarthritic patients undergoing Total hip or Total knee arthroplasty. Arch Phys Med Rehabil 89:2373–2374. https://doi.org/10.1016/j.apmr.2008.06.007

    Article  PubMed  PubMed Central  Google Scholar 

  7. Lingard EA, Mitchell SY, Francis RM, Rawlings D, Peaston R, Birrell FN, McCaskie AW (2010) The prevalence of osteoporosis in patients with severe hip and knee osteoarthritis awaiting joint arthroplasty. Age Ageing 39:234–239. https://doi.org/10.1093/ageing/afp222

    Article  PubMed  Google Scholar 

  8. Chang CB, Kim TK, Kang YG, Seong SC, Kang S-B (2014) Prevalence of osteoporosis in female patients with advanced knee osteoarthritis undergoing total knee arthroplasty. J Korean Med Sci 29:1425–1431. https://doi.org/10.3346/jkms.2014.29.10.1425

    Article  PubMed  PubMed Central  Google Scholar 

  9. Mazess RB, Barden HS (1988) Measurement of bone by dual-photon absorptiometry (DPA) and dual-energy X-ray absorptiometry (DEXA). Ann Chir Gynaecol 77:197–203

    CAS  PubMed  Google Scholar 

  10. Petersen MM, Lauritzen JB, Pedersen JG, Lund B (1996) Decreased bone density of the distal femur after uncemented knee arthroplasty. A 1-year follow-up of 29 knees. Acta Orthop Scand 67:339–344. https://doi.org/10.3109/17453679609002327

    Article  CAS  PubMed  Google Scholar 

  11. Seki T, Omori G, Koga Y, Suzuki Y, Ishii Y, Takahashi H (1999) Is bone density in the distal femur affected by use of cement and by femoral component design in total knee arthroplasty? J Orthop Sci 4:180–186

    Article  CAS  Google Scholar 

  12. Downs SH, Black N (1998) The feasibility of creating a checklist for the assessment of the methodological quality both of randomised and non-randomised studies of health care interventions. J Epidemiol Community Health 52:377–384. https://doi.org/10.1136/jech.52.6.377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Abràmoff MD, Magalhães PJ, Ram SJ (2004) Image processing with Image. J Biophoton Int 11:36–42

    Google Scholar 

  14. Borenstein M, Hedges L, Higgins J, Rothstein H (2009) Multiple outcomes or time-points within a study. Introd. to meta-analysis, Pennsylvania

    Book  Google Scholar 

  15. Petersen MM, Olsen C, Lauritzen JB, Lund B (1995) Changes in bone mineral density of the distal femur following uncemented total knee arthroplasty. J Arthroplast 10:7–11

    Article  CAS  Google Scholar 

  16. Liu TK, Yang RS, Chieng PU, Shee B (1995) Periprosthetic bone mineral density of the distal femur after total knee arthroplasty. Int Orthop 19:346–351. https://doi.org/10.1007/BF00178346

    Article  CAS  PubMed  Google Scholar 

  17. Gazdzik TS, Gajda T, Kaleta M (2008) Bone mineral density changes after Total knee arthroplasty: one-year follow-up. J Clin Densitom 11:345–350. https://doi.org/10.1016/j.jocd.2008.04.007

    Article  PubMed  Google Scholar 

  18. Mau-moeller A, Behrens M, Felser S, Bruhn S, Mittelmeier W, Bader R et al (2015) Modulation and Predictors of Periprosthetic Bone Mineral Density following total knee arthroplasty. Biomed Res Int 2015:418168. https://doi.org/10.1155/2015/418168

    Article  PubMed  PubMed Central  Google Scholar 

  19. Windisch C, Windisch B, Kolb W, Kolb K, Grützner P, Roth A (2012) Osteodensitometry measurements of periprosthetic bone using dual energy X-ray absorptiometry following total knee arthroplasty. Arch Orthop Trauma Surg 132:1595–1601. https://doi.org/10.1007/s00402-012-1601-9

    Article  CAS  PubMed  Google Scholar 

  20. Minoda Y, Ikebuchi M, Kobayashi A, Iwaki H, Inori F, Nakamura H (2010) A cemented mobile-bearing total knee replacement prevents periprosthetic loss of bone mineral density around the femoral component: a MATCHED COHORT STUDY. J Bone Jt Surg Br 92-B:794–798. https://doi.org/10.1302/0301-620X.92B6.23159

    Article  Google Scholar 

  21. van Loon CJ, Oyen WJ, de Waal Malefijt MC, Verdonschot N (2001) Distal femoral bone mineral density after total knee arthroplasty: a comparison with general bone mineral density. Arch Orthop Trauma Surg 121:282–285

    Article  Google Scholar 

  22. Soininvaara TA, Miettinen HJA, Jurvelin JS, Suomalainen OT, Alhava EM, Kröger HPJ (2004) Periprosthetic femoral bone loss after total knee arthroplasty: 1-year follow-up study of 69 patients. Knee 11:297–302. https://doi.org/10.1016/j.knee.2003.09.006

    Article  PubMed  Google Scholar 

  23. Soininvaara T, Nikola T, Vanninen E, Miettinen H, Kröger H (2008) Bone mineral density and single photon emission computed tomography changes after total knee arthroplasty: a 2-year follow-up study. Clin Physiol Funct Imaging 28:101–106. https://doi.org/10.1111/j.1475-097X.2007.00782.x

    Article  PubMed  Google Scholar 

  24. Karbowski A, Schwitalle M, Heine A, Eckardt J (1999) Periprosthetic bone remodelling after total knee arthroplasty: early assessment by dual energy X-ray absorptiometry. Trauma 119:324–326

    CAS  Google Scholar 

  25. Järvenpää J, Soininvaara T, Kettunen J, Miettinen H, Kröger H (2014) Changes in bone mineral density of the distal femur after total knee arthroplasty: a 7-year DEXA follow-up comparing results between obese and nonobese patients. Knee 21:232–235. https://doi.org/10.1016/j.knee.2013.03.004

    Article  PubMed  Google Scholar 

  26. Shibuki T, Sukezaki F, Suzuki T, Toyoshima Y, Nagai T, Inagaki K (2016) Periprosthetic bone mineral density changes after cementless Total knee arthroplasty. Showa Univ J Med Sci 28:155–161

    Article  Google Scholar 

  27. Saari T, Uvehammer J, Carlsson LV, Regner L, Karrholm J (2006) Posterior stabilized component increased femoral bone loss after total knee replacement. 5-year follow-up of 47 knees using dual energy X-ray absorptiometry. Knee 13:435–439. https://doi.org/10.1016/j.knee.2006.08.002

    Article  PubMed  Google Scholar 

  28. Della Rocca GJ, Leung KS, Pape H-C (2011) Periprosthetic fractures: epidemiology and future projections. J Orthop Trauma 25(Suppl 2):S66–S70. https://doi.org/10.1097/BOT.0b013e31821b8c28

    Article  PubMed  Google Scholar 

  29. Frenzel S, Vécsei V, Negrin L (2015) Periprosthetic femoral fractures—incidence, classification problems and the proposal of a modified classification scheme. Int Orthop 39:1909–1920. https://doi.org/10.1007/s00264-015-2967-4

    Article  PubMed  Google Scholar 

  30. Abdel MP, Houdek MT, Watts CD, Lewallen DG, Berry DJ (2016) Epidemiology of periprosthetic femoral fractures in 5417 revision total hip arthroplasties: a 40-year experience. Bone Jt J 98B:468–474. https://doi.org/10.1302/0301-620X.98B4.37203

    Article  Google Scholar 

  31. Abdel MP, Watts CD, Houdek MT, Lewallen DG, Berry DJ (2016) Epidemiology of periprosthetic fracture of the femur in 32 644 primary total hip arthroplasties: a 40-year experience. Bone Joint J 98–B:461–467. https://doi.org/10.1302/0301-620X.98B4.37201

    Article  PubMed  Google Scholar 

  32. vanLenthe GH, Malefijt MCD, Huiskes R (1997) Stress shielding after total knee replacement may cause bone resorption in the distal femur. J Bone Joint Surg Br 79B:117–122. https://doi.org/10.1302/0301-620X.79B1.6808

    Article  Google Scholar 

  33. Epstein S, Inzerillo AM, Caminis J, Zaidi M (2003) Disorders associated with acute rapid and severe bone loss. J Bone Miner Res 18:2083–2094. https://doi.org/10.1359/jbmr.2003.18.12.2083

    Article  PubMed  Google Scholar 

  34. Marshall D, Johnell O, Wedel H (1996) Meta-analysis of how well measures of bone mineral density predict occurrence of osteoporotic fractures. BMJ 312:1254–1259. https://doi.org/10.1136/bmj.312.7041.1254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Teng S, Yi C, Krettek C, Jagodzinski M (2015) Bisphosphonate Use and Risk of Implant Revision after Total Hip / Knee Arthroplasty : A Meta-Analysis of Observational Studies. PLoS One 10(10):e0139927. https://doi.org/10.1371/journal.pone.0139927

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Fu S-H, Wang C-Y, Yang R-S, Wu F-LL, Hsiao F-Y (2017) Bisphosphonate use and the risk of undergoing Total knee arthroplasty in osteoporotic patients with osteoarthritis. J Bone Joint Surg 99:938–946. https://doi.org/10.2106/JBJS.16.00385

    Article  PubMed  Google Scholar 

  37. Goh JC, Low SL, Bose K (1995) Effect of femoral rotation on bone mineral density measurements with dual energy X-ray absorptiometry. Calcif Tissue Int 57:340–343

    Article  CAS  Google Scholar 

  38. Therbo M, Petersen MM, Schroder HM, Nielsen PK, Zerahn B, Lund B et al (2003) The precision and influence of rotation for measurements of bone mineral density of the distal femur following total knee arthroplasty: a methodological study using DEXA. Acta Orthop Scand 74:677–682. https://doi.org/10.1080/00016470310018199

    Article  PubMed  Google Scholar 

  39. Spittlehouse AJ, Getty CJ, Eastell R (1999) Measurement of bone mineral density by dual-energy X-ray absorptiometry around an Uncemented knee prosthesis. J Arthroplast 14:957–963

    Article  CAS  Google Scholar 

  40. Sepriano A, Roman-Blas JA, Little RD, Pimentel-Santos F, Arribas J, Largo R et al (2015) DXA in the assessment of subchondral bone mineral density in knee osteoarthritis-a semi-standardized protocol after systematic review. Semin Arthritis Rheum 45:275–283. https://doi.org/10.1016/j.semarthrit.2015.06.012

    Article  PubMed  Google Scholar 

  41. Tjørnild M, Søballe K, Bender T, Stilling M (2011) Reproducibility of BMD measurements in the prosthetic knee comparing knee-specific software to traditional DXA software: a clinical validation. J Clin Densitom 14:138–148. https://doi.org/10.1016/j.jocd.2011.01.002

    Article  PubMed  Google Scholar 

  42. McClung MR (2005) The relationship between bone mineral density and fracture risk. Curr Osteoporos Rep 3:57–63

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul A. Anderson.

Ethics declarations

Conflict of interest

None.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Investigation performed at the University of Wisconsin, Madison, Wisconsin

Appendix

Appendix

Summary of investigations

Fourteen studies were included in the meta-analysis. Two of the first studies prospectively measuring BMD after TKA were by Petersen et al. [10, 15] using DPA. Petersen et al. [15] 1995 measured BMD in three areas of the distal femur (anterior to the fixation lugs, proximally to the lugs and posteriorly to the lugs) 2 years after TKA in 8 patients. The 1996 Petersen et al. [10] study measured and compared the BMD at similar regions (behind the anterior flange of femoral component and above the fixation lugs) for 29 patients at 1 year after implantation with different femoral components in hopes to reduce the previously observed loss in BMD. Another earlier study published, Liu et al. [16], was a case-control study measuring mostly supracondylar BMD bilaterally in 48 females, comparing two different implants to age-matched controls.

Several studies focused on quantifying supracondylar BMD changes. Gazdzik et al. [17] is a prospective longitudinal study that reported the BMD of an area proximal to the superior border of the femoral components in 106 postmenopausal females. In a similarly designed study, Mau-Moeller et al. [18] measured BMD three months postoperatively at the same femoral ROIs in 23 patients (65% male). Windisch et al. [19] also measured supracondylar femur BMD prospectively in 50 patients at several time points in the first postoperative year. In the Minoda et al. [20] study, twenty-eight patients with fixed-bearing TKA were matched with 28 patients with mobile-bearing TKAs, and the BMD of the anterior, central and posterior distal femur ROIs (spanning metaphyseal and intracondylar regions) were measured for 24 months. Van Loon et al. [21] studied the 1-year postoperative changes in BMD of the femoral neck, lumbar spine, and distal femur (distal anterior area of the femur behind the anterior flange and supracondylar area just superior to the anterior flange of the femoral component).

Soininvaara et al. [22, 23] developed standardized ROIs of the distal femur (anterior metaphyseal, central metaphyseal, posterior metaphyseal, total metaphyseal and diaphyseal). One of their studies in 2004 measured the changes in BMD of the operative leg in 69 patients over the course of a year [22]. Karbowski et al. [24] conducted a smaller longitudinal study measuring BMD of the same ROIs in the operative knee of 12 patients. Soininvaara et al. [23] 2008 studied the changes in BMD detected by DXA along with attempting to correlate single photon emission computed tomography measurements in the standard ROIs prospectively 2 years after TKA in 16 patients. Järvenpää et al. [25] compared the BMD at these standard ROIs defined by Soininvaara between 61 obese and nonobese patients over a period of 7 years. Shibuki et al. [26] retrospectively studied 22 patients collecting BMD at Soininvaara’s recommended ROIs over a 2-year postoperative period. In 2006, Saari et al. [27] reported 83 patients randomized into four groups based on varus/valgus alignment: a flat or a concave tibial plateau with the posterior cruciate ligament (PCL) retained and a concave or a posterior-stabilized tibial component with the PCL resected. They measured three intracondylar ROIs over 5 years.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prince, J.M., Bernatz, J.T., Binkley, N. et al. Changes in femoral bone mineral density after total knee arthroplasty: a systematic review and meta-analysis. Arch Osteoporos 14, 23 (2019). https://doi.org/10.1007/s11657-019-0572-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11657-019-0572-7

Keywords

Navigation