Skip to main content
Log in

Multi-gradient fluids

  • Published:
Ricerche di Matematica Aims and scope Submit manuscript

Abstract

An internal energy function of the mass density, the volumetric entropy and their gradients at n-order generates the representation of multi-gradient fluids. Thanks to Hamilton’s principle, we obtain a thermodynamical form of the equation of motion which generalizes the case of perfect compressible fluids. First integrals of flows are extended cases of perfect compressible fluids. The equation of motion and the equation of energy are written for dissipative cases, and are compatible with the second law of thermodynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Due to the fact that \(\varepsilon ,_{\rho ,_{x_{j_1}} \ldots ,_{x_{j_p}}} d\rho ,_{x_{j_1}} \ldots ,_{x_{j_p}}= d\rho ,_{x_{j_1}} \ldots ,_{x_{j_p}}\varepsilon ,_{\,\rho ,_{x_{j_1}} \ldots ,_{x_{j_p}}}\) and \(\varepsilon ,_{\eta ,_{x_{j_1}} \ldots ,_{x_{j_p}}} d\eta ,_{x_{j_1}} \ldots ,_{x_{j_p}}= d\eta ,_{x_{j_1}} \ldots ,_{x_{j_p}}\varepsilon ,_{\,\eta ,_{x_{j_1}} \ldots ,_{x_{j_p}}}\), we indifferently permute the position of the two terms in the summation.

  2. For example, when \(A=\left[ \begin{array}{ccc} a_{11}, &{} a_{12}, &{} a_{13} \\ a_{21}, &{} a_{22}, &{} a_{23} \\ a_{31}, &{} a_{32}, &{} a_{33} \end{array} \right] ,\) then

    \(\mathrm {div}A=\left[ a_{11},_{x_{1}}+a_{21},_{x_{2}}+a_{31},_{x_{3}},\, a_{12},_{x_{1}}+a_{22},_{x_{2}}+ a_{32},_{x_{3}},\, a_{13},_{x_{1}}+a_{23},_{x_{2}}+a_{33},_{x_{3}} \right] ,\ \mathrm {and}\)

    \(\mathrm {div}_{2}\,A={a_{11}}_{,x_{1},x_{1}}+{a_{21}}_{,x_{2},x_{1}}+{a_{31}} _{,x_{3},x_{1}}+{a_{12}}_{,x_{1},x_{2}}+{a_{22}}_{,x_{2},x_{2}}+{a_{32}} _{,x_{3},x_{2}}+{a_{13}}_{,x_{1},x_{3}}+{a_{23}}_{,x_{2},x_{3}}+{a_{33}} _{,x_{3},x_{3}}.\)

References

  1. Van der Waals, J.D.: The thermodynamic theory of capillarity under the hypothesis of continuous variation of density. Translation by J.S. Rowlinson. J. Stat. Phys. 20, 200–244 (1979)

    Article  Google Scholar 

  2. Cahn, J.W., Hilliard, J.E.: Free energy of a nonuniform system, III. Nucleation in a two-component incompressible fluid. J. Chem. Phys. 31, 688–699 (1959)

    Article  Google Scholar 

  3. Gouin, H., Gavrilyuk, S.: Wetting problem for multi-component fluid mixtures. Physica A 268, 291–308 (1999). arXiv:0803.0275

    Article  Google Scholar 

  4. Gărăjeu, M., Gouin, H., Saccomandi, G.: Scaling Navier–Stokes equation in nanotubes. Phys. Fluids. 25, 082003 (2013). arXiv:1311.2484

    Article  Google Scholar 

  5. Gouin, H.: Liquid nanofilms. A mechanical model for the disjoining pressure. Int. J. Eng. Sci. 47, 691–699 (2009). arXiv:0904.1809

    Article  MathSciNet  MATH  Google Scholar 

  6. Gouin, H.: The watering of tall trees—embolization and recovery. J. Theor. Biol. 369, 42–50 (2015). arXiv:1404.4343

    Article  MATH  Google Scholar 

  7. Germain, P.: The method of the virtual power in continuum mechanics—part 2: microstructure. SIAM J. Appl. Math. 25, 556–575 (1973)

    Article  MATH  Google Scholar 

  8. Gouin, H., Ruggeri, T.: Mixtures of fluids involving entropy gradients and acceleration waves in interfacial layers. Eur. J. Mech. B Fluids 24, 596–613 (2005). arXiv:0801.2096

    Article  MathSciNet  MATH  Google Scholar 

  9. Eremeyev, V.A., Fischer, F.D.: On the phase transitions in deformable solids. Z. Angew. Math. Mech. 90, 535–536 (2010)

    Article  MATH  Google Scholar 

  10. Rowlinson, J.S., Widom, B.: Molecular Theory of Capillarity. Clarendon Press, Oxford and Google books (2012)

    Google Scholar 

  11. Gouin, H., Seppecher, P.: Temperature profile in a liquid-vapour interface near the critical point. Proc. R. Soc. A 473, 20170229 (2017). arXiv:1703.07302

  12. Casal, P., Gouin, H.: Equation of motion of thermocapillary fluids. C. R. Acad. Sci. Ser. II Mec. Phys. Chim. Sci. Terre Univ. 306, 99–104 (1988)

    MATH  Google Scholar 

  13. Maitournam, M.H.: Entropy and temperature gradients thermomechanics: dissipation, heat conduction inequality and heat equation. C. R. Mec. 340, 434–443 (2012)

    Article  Google Scholar 

  14. Bertram, A., Forest, S.: The thermodynamics of gradient elastoplasticity. Contin. Mech. Thermodyn. 26, 269–286 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  15. Serrin, J.: Mathematical principles of classical fluid mechanics. In: Flügge, S. (ed.) Encyclopedia of Physics VIII/1, pp. 125–263. Springer, Berlin (1960)

    Google Scholar 

  16. Gouin, H.: Noether’s theorem in fluid mechanics. Mech. Res. Commun. 3, 151–156 (1976)

    Article  MATH  Google Scholar 

  17. Casal, P., Gouin, H.: Connexion between the energy equation and the motion equation in Korteweg’s theory of capillarity. C. R. Acad. Sci. Ser. II Mec. Phys. Chim. Sci. Terre Univ. 300, 231–234 (1985)

    MATH  Google Scholar 

  18. Truesdell, C.: Introduction à la mécanique Rationnelle des Milieux Continus. Masson, Paris (1974)

    Google Scholar 

Download references

Acknowledgements

The results contained in the present paper have been partially presented in Wascom 2017.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henri Gouin.

Additional information

The paper is dedicated to Professor Tommaso Ruggeri.

The work was supported by National Group of Mathematical Physics GNFM-INdAM (Italy).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gouin, H. Multi-gradient fluids. Ricerche mat 68, 195–209 (2019). https://doi.org/10.1007/s11587-018-0397-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11587-018-0397-5

Keywords

Mathematics Subject Classification

Navigation