Skip to main content
Log in

An inspection game of internal audit and the influence of whistle-blowing

  • Original Paper
  • Published:
Journal of Business Economics Aims and scope Submit manuscript

Abstract

In this paper we analyse how whistle-blowing affects fraudulent behaviour of managers while the company instigates imperfect internal audit to detect the fraud. To do so, we employ in a first step a non-cooperative inspection game to analyse fraudulent behaviour of a manager controlled by an internal auditor. In a second step we introduce exogenous whistle-blowing of a manager’s employee to aid the auditor to reveal the fraud. In a third step, the two-person inspection game is extended to a three-person approach with endogenous whistle-blowing. Our novel results are that the intensity of internal audit is always lower with whistle-blowing than without and that whistle-blowing renders the manager to act less fraudulently than compared to the basic inspection game if and only if she is unaware of the whistle-blower’s expected pay-off and the efficacy of internal audit is sufficiently low.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. Note that this assumption does not connote that the employee’s identity is or becomes known to the board. That is, given a truthful report by the internal auditor to the board, the auditor only confirms that her successful identification of fraudulent behaviour was possible only due to some kind of ’company-internal help’.

  2. In the Appendix, we present all comparative static results regarding (31) and (32).

  3. As before, we assume that anonymity of the employee is guaranteed with the internal auditor being the one to transfer the reward from the board to the whistle-blower.

  4. Complete comparative static results of (48), (49) and (50) are presented in are presented in the Appendix.

References

  • Abbink K (2006) Laboratory experiments on corruption. In: Rose-Ackerman S (ed) International handbook on the economics of corruption. Edward Elgar, Cheltenham, pp 418–437

    Google Scholar 

  • Abbink K, Wu K (2017) Reward self-reporting to deter corruption: an experiment on mitigating collusive bribery. J Econ Behav Org 133:256–272

    Article  Google Scholar 

  • Andreozzi L (2010) Inspection games with long-run inspectors. Eur J Appl Math 21(4/5):441–458

    Article  Google Scholar 

  • Banerjee A (1997) A theory of misgovernance. Q J Econ 112(4):1289–1332

    Article  Google Scholar 

  • Bartuli J, Djawadi BM, Fahr R (2016) Business ethics in organizations: an experimental examination of whistle-blowing and personality. IZA Discussion Paper No. 10190

  • Basu K, Basu K, Cordella T (2016) Asymmetric punishment as an instrument of corruption control. J Public Econ Theory 18(6):831–856

    Article  Google Scholar 

  • Beim D, Hirsch AV, Kastellec JP (2014) Whistleblowing and compliance in the judicial hierarchy. Am J Polit Sci 58(4):904–918

    Article  Google Scholar 

  • Berentsen A, Bruegger E, Loertscher S (2008) On cheating, doping and whistleblowing. Eur J Polit Econ 24(2):415–436

    Article  Google Scholar 

  • Bigoni M, Fridolfsson S-O, Le Coq C, Spagnolo G (2015) Trust, leniency, and deterrence. J Law Econ Org 31(4):663–689

    Article  Google Scholar 

  • Bone J, Spengler D (2014) Does reporting decrease corruption? J Interdiscip Econ 26(1/2):161–186

    Article  Google Scholar 

  • Borch K (1982) Insuring and auditing the auditor. In: Deistler M, Fürst E, Schwödiauer G (eds) Games, economic dynamics, and time series analysis. Physica, Wien, pp 117–126

    Chapter  Google Scholar 

  • Breuer L (2013) Tax compliance and whistleblowing: the role of incentives. Bonn J Econ 2(2):7–44

    Google Scholar 

  • Chassang S, Padro i Miquel G (2014) Corruption, intimidation and whistleblowing: a theory of inference from unverifiable reports. NBER Working Paper No. 20315

  • Christöfl A, Leopold-Wildburger U, Rasmußen A (2017) An experimental study on bribes, detection probability and principal witness policy. J Bus Econ 87(8):1067–1081

    Article  Google Scholar 

  • COSO (2013) Internal control-integrated framework. Committee of Sponsoring Organizations of the Treadway Commission

  • Crook D (2000) How to encourage whistleblowing. J Financ Regul Compliance 8(4):326–332

    Article  Google Scholar 

  • Dodd-Frank Act (2010) The Dodd-Frank Wall Street Reform and Consumer Protection Act (Public Law No. 111–203)

  • Doyle J, Ge W, McVay S (2007) Determinants of weaknesses in internal control over financial reporting. J Account Econ 44(1):193–223

    Article  Google Scholar 

  • Dresher M (1962) A sampling inspection problem in arms control agreements: a game-theoretic analysis. RAND Corporation, Santa Monica

    Google Scholar 

  • Dyck A, Morse A, Zingales L (2010) Who blows the whistle on corporate fraud? J Finance 65(6):2213–2253

    Article  Google Scholar 

  • Ewert R (1993) Rechnungslegung, Wirtschaftsprüfung, rationale Akteure und Märkte: ein Grundmodell zur Analyse der Qualität von Unternehmenspublikationen. Schmalenbachs Zeitschrift für betriebswirtschaftliche Forschung 45(9):715–747

    Google Scholar 

  • Ewelt-Knauer C, Knauer T, Lachmann M (2015) Fraud characteristics and their effects on shareholder wealth. J Bus Econ 85(9):1011–1047

    Article  Google Scholar 

  • Fandel G (1979) Optimale Entscheidungen in Organisationen. Springer, Berlin

    Book  Google Scholar 

  • Fandel G, Trockel J (2011a) Optimal lot sizing in a non-cooperative material manager-controller game. Int J Prod Econ 133(1):256–261

    Article  Google Scholar 

  • Fandel G, Trockel J (2011b) A game theoretical analysis of an extended manager-auditor-conflict. Zeitschrift für Betriebswirtschaft Special Issue 4:33–53

  • Fandel G, Trockel J (2013) Avoiding non-optimal management decisions by applying a three-person inspection game. Eur J Oper Res 226(1):85–93

    Article  Google Scholar 

  • Friehe T (2008) Correlated payoffs in the inspection game: some theory and an application to corruption. Public Choice 137(10):127–143

    Article  Google Scholar 

  • Güth W, Kliemt H (2007) Vertrauen und Unternehmen. Zeitschrift für Betriebswirtschaft Special Issue 1:29–48

  • Hildreth JAD, Gino F, Bazerman M (2016) Blind loyalty? When group loyalty makes us see evil or engage in it. Org Behav Hum Decis Process 132:16–36

    Article  Google Scholar 

  • Hillison W, Pacini C, Sinason D (1999) The internal auditor as fraud-buster. Manag Audit J 14(7):351–362

    Article  Google Scholar 

  • Hoffman VB, Zimbelman MF (2009) Do strategic reasoning and brainstorming help auditors change their standard audit procedures in response to fraud risk? Account Rev 84(3):811–837

    Article  Google Scholar 

  • Hohzaki R, Masuda R (2012) A smuggling game with asymmetrical information of players. J Oper Res Soc 63(10):1434–1446

    Article  Google Scholar 

  • Khalil F, Lawarree J (2006) Incentives for corruptible auditors in the absence of commitment. J Ind Econ 54(2):269–291

    Article  Google Scholar 

  • Khalil F, Lawarree J, Yun S (2010) Bribery versus extortion: allowing the lesser of two evils. RAND J Econ 41(1):179–198

    Article  Google Scholar 

  • Küpper H-U (2007) Business ethics in Germany - problems, concepts, and functions. Zeitschrift für Wirtschafts- und Unternehmensethik 8(3):250–274

    Google Scholar 

  • Lee G, Fargher N (2013) Companies’ use of whistle-blowing to detect fraud: an examination of corporate whistle-blowing policies. J Bus Ethics 114(2):283–295

    Article  Google Scholar 

  • Liekweg A (2014) Fraud vermeiden durch Controlling und Interne Revision. Control Manag Rev 58(5):20–27

    Article  Google Scholar 

  • Malmstrom FV, Mullin RD (2013) Dishonesty and cheating in a Federal Service Academy: toleration is the main ingredient. Res High Educ J 19:1–19

    Google Scholar 

  • Marvao C, Spagnolo G (2014) What do we know about the effectiveness of leniency policies? A survey of the empirical and experimental evidence, SITE Working Paper Series 28

  • Masli A, Peters GF, Richardson VJ, Sanchez JM (2010) Examining the potential benefits of internal control monitoring technology. Account Rev 85(3):1001–1034

    Article  Google Scholar 

  • Mechtenberg L, Muehlheusser G, Roider A (2017) Whistle-blower protection: theory and experimental evidence, CESifo Working Paper No. 6394

  • Miceli MP, Near JP, Dworkin TM (2009) A word to the wise: how managers and policy-makers can encourage employees to report wrongdoing. J Bus Ethics 86(3):379–396

    Article  Google Scholar 

  • Moberly R (2012) Sarbanes-Oxley’s whistleblower provisions: ten years later. College of Law Faculty Publications Paper 154

  • Nash J (1951) Non-cooperative games. Ann Math 54(2):286–295

    Article  Google Scholar 

  • Read WJ, Rama DV (2003) Whistle-blowing to internal auditors. Manag Audit J 18(5):354–362

    Article  Google Scholar 

  • Reuben E, Stephenson M (2013) Nobody likes a rat: on the willingness to report lies and the consequences thereof. J Econ Behav Org 93:384–391

    Article  Google Scholar 

  • Schmolke KU, Utikal V (2016) Whistleblowing: incentives and situational determinants. FAU Discussion Papers in Economics No. 09/2016

  • Schwartz MS (2013) Developing and sustaining an ethical corporate culture: the core elements. Bus Horiz 56(1):39–50

    Article  Google Scholar 

  • Soh DSB, Martinov-Bennie N (2011) The internal audit function: perceptions of internal audit roles, effectiveness and evaluation. Manag Audit J 26(7):605–622

    Article  Google Scholar 

  • Spagnolo G (2008) Leniency and whistleblowers in antitrust. In: Buccirossi P (ed) Handbook of antitrust economics. MIT Press, Cambridge

    Google Scholar 

  • The Institute of Internal Auditors (2013) IIA Position Paper: The three lines of defense in effective risk management and control. Altamonte Springs

  • Trockel J (2013) Changing bonuses and the resulting effects of employees’ incentives to an inspection game. J Bus Econ 83(7):759–783

    Article  Google Scholar 

  • Tsebelis G (1989) The abuse of probability in political analysis: the Robinson Crusoe fallacy. Am Polit Sci Rev 83(1):77–91

    Article  Google Scholar 

  • Tsebelis G (1990) Are sanctions effective? A game-theoretic analysis. J Confl Resolut 34(1):3–28

    Article  Google Scholar 

  • Tsebelis G (1995) Another response to Gordon Tullock. J Theor Polit 7(1):97–99

    Article  Google Scholar 

  • Wolfe S, Worth M, Dreyfus S, Brown AJ (2014) Whistleblower protection laws in G20 countries - priorities for action. Transparency International Australia

Download references

Acknowledgements

The authors would like to thank H.-U. Küpper for handling the manuscript during the submission process as well as three anonymous reviewers for their helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Trockel.

Appendices

Appendix

Comparative static analysis of (31) and (32)

Differentiating (31) with respect to the according parameters while taking account of (1), (2) and (28) provides

$$\begin{aligned} \frac{\partial \tilde{p}_h^*}{\partial \Gamma }&= \frac{1}{p_r \cdot (\Delta - \rho ^-) \cdot (1 - p_d)} > 0, \\ \frac{\partial \tilde{p}_h^*}{\partial \Delta }&= - \frac{\Gamma - \rho ^-}{p_r \cdot (\Delta - \rho ^-)^2 \cdot (1 - p_d)}< 0,\\ \frac{\partial \tilde{p}_h^*}{\partial \rho ^-}&= \frac{\Gamma - \Delta }{p_r \cdot (\Delta - \rho ^-)^2 \cdot (1 - p_d)}< 0, \\ \frac{\partial \tilde{p}_h^*}{\partial p_r}&= - \frac{\Gamma - \rho ^- - (\Delta - \rho ^-) \cdot p_d}{p_r^2 \cdot (\Delta - \rho ^-) \cdot (1 - p_d)}< 0, \\ \frac{\partial \tilde{p}_h^*}{\partial p_d}&= \frac{\Gamma - \Delta }{p_r \cdot (\Delta - \rho ^-) \cdot (1 - p_d)^2} < 0. \end{aligned}$$

Let \(M \equiv \left( (1 - p_d) \cdot p_r \cdot (R^+ + R^-) + p_d \cdot (1 - z) \cdot R^+ \right) ^2\). Differentiating (32) with respect to the relevant parameters subject to (16) leads to

$$\begin{aligned} \frac{\partial \tilde{p}_f^*}{\partial K}&= \frac{1}{M}> 0,\\ \frac{\partial \tilde{p}_f^*}{\partial R^+}&= - \frac{K \cdot \left( (1 - p_d) \cdot p_r + p_d \cdot (1 - z) \right) }{M}< 0,\\ \frac{\partial \tilde{p}_f^*}{\partial R^-}&= - \frac{(1 - p_d) \cdot p_r \cdot K}{M}< 0,\\ \frac{\partial \tilde{p}_f^*}{\partial p_r}&= - \frac{(1 - p_d) \cdot K \cdot (R^+ + R^-)}{M}< 0,\\ \frac{\partial \tilde{p}_f^*}{\partial p_d}&= \frac{K \cdot \left( p_r \cdot (R^+ + R^-) - (1 - z) \cdot R^+ \right) }{M} \begin{Bmatrix}< \\> \end{Bmatrix} 0 \ \text { if } \ p_r \begin{Bmatrix} < \\> \end{Bmatrix} \frac{(1 - z) \cdot R^+}{R^+ + R^-},\\ \frac{\partial \tilde{p}_f^*}{\partial z}&= \frac{K \cdot R^+}{M} > 0. \end{aligned}$$

2.1 Proof of proposition 1

To prove proposition 1 (i), exploit (1), (17) and (31) and simplify to obtain

$$\begin{array}{lrcl} & {p}_h^* & > & \tilde{p}_h^* \\ \\ \Leftrightarrow & \frac{\Gamma - \rho^-}{p_r \cdot (\Delta - \rho^-)} & > &\frac{\Gamma - \rho^- - (\Delta - \rho^-) \cdot p_d}{p_r \cdot (\Delta - \rho^-) \cdot (1 - p_d)} \\ \\ \Leftrightarrow & (1 - p_d) \cdot (\Gamma - \rho^-) & > & \Gamma - \rho^- - (\Delta - \rho^-) \cdot p_d \\ \\ \Leftrightarrow & - p_d \cdot (\Gamma - \rho^-) & > & -(\Delta - \rho^-) \cdot p_d \\ \\ \Leftrightarrow & \Gamma & < & \Delta, \end{array}$$

which is true by (2).

Proposition 1 (ii) is proven by comparing (18) and (32) subject to (16). This leads to

$$\begin{array}{lrcl} & {p}_f^* & > & \tilde{p}_f^* \\ \\ \Leftrightarrow & \frac{K}{p_r \cdot (R^+ + R^-)} & >& \frac{K}{(1 - p_d) \cdot p_r \cdot (R^+ + R^-) + p_d \cdot (1- z) \cdot R^+} \\ \\ \Leftrightarrow & p_r \cdot (R^+ + R^-) & <& (1 - p_d) \cdot p_r \cdot (R^+ + R^-) + p_d \cdot (1 - z) \cdot R^+ \\ \\ \Leftrightarrow & p_d \cdot p_r \cdot (R^+ + R^-) & <& p_d \cdot (1 - z) \cdot R^+ \\ \\ \Leftrightarrow & p_r & <& \frac{(1 - z) \cdot R^+}{R^+ + R^-} \end{array}$$

where due to the general assumption of \(z \in (0,1)\), we have \(\frac{(1 - z) \cdot R^+}{R^+ + R^-} \in (0,1)\). The opposite case of \(p_f^* < \tilde{p}_f^*\), consequently, holds if \(p_r > \frac{(1 - z) \cdot R^+}{R^+ + R^-}\).

Discussion of strategy tuples from Fig. 1 in the three-person inspection game with endogenous whistle-blowing

As each player aims at maximising its own pay-off according to Nash and since we intend to solve the optimisation problem in accordance with an inspection game approach, it is necessary to figure out, if there is a Nash equilibrium in pure strategies in the first place. We successively verify whether or not one of the strategy tuples defined in Fig. 1 results in the highest pay-off for each player subject to the quantities given in Table 2. In particular, we investigate for each player’s possible strategy if she has an incentive to change her strategy taking as given the choices of the other players. Recall, that \(v^g \equiv v + b_b\).

1.1 Strategy tuple \({{s}}_{{1}} =\) (fraud/high level/hide):

  • The manager prefers no fraud as in \(s_5\) to fraud as in \(s_1\), since \({\mathcal {A}}^M < {\mathcal {C}}^M\) by (13).

  • The auditor prefers high level as in \(s_1\) to low level as in \(s_3\), since \({\mathcal {A}}^A > {\mathcal {B}}^A\) by (15).

\(\Rightarrow s_1\) cannot be a Nash equilibrium in pure strategies irrespective of the strategy choice of the employee.

1.2 Strategy tuple \({{s}}_{{2}} =\) (fraud/high level/disclose):

  • There is no alternative for the manager. He, therefore, chooses fraud as in \(s_2\).

  • The auditor prefers high level as in \(s_2\) to low level as in \(s_4\), i.e. \(s_2 \succ s_4\), and vice versa if

    $$\begin{aligned} s_2 \begin{Bmatrix} \succ \\ \prec \end{Bmatrix} s_4 \quad \Leftrightarrow \quad {\mathcal {A}}^A_d \begin{Bmatrix}> \\< \end{Bmatrix} {\mathcal {B}}^A_d \quad \Leftrightarrow \quad z \begin{Bmatrix} < \\ > \end{Bmatrix} 1 - \frac{K}{R^+}, \end{aligned}$$
    (54)

    where, due to (15), the bound on z from (54) is less than one.

  • The employee prefers disclose as in \(s_2\) to hide as in \(s_1\), i.e. \(s_2 \succ s_1\), and vice versa, if

    $$\begin{aligned} s_2 \begin{Bmatrix} \succ \\ \prec \end{Bmatrix} s_1 \quad \Leftrightarrow \quad {\mathcal {A}}^E_d \begin{Bmatrix}> \\< \end{Bmatrix} {\mathcal {A}}^E \quad \Leftrightarrow \quad (1 - \mu ) \cdot b_b + \mu \cdot b_\mu \begin{Bmatrix} > \\ < \end{Bmatrix} \mu \cdot (v + c_\mu ) + (1 - p_r) \cdot m + c_s \end{aligned}$$
    (55)

    and we conclude

Lemma 1

Suppose that the manager, auditor and employee simultaneously choose one from their respective two strategies. Then, there exists a Nash equilibrium in the pure strategies (fraud/high level/disclose) if and only if

$$\begin{aligned} z&< 1 - \frac{K}{R^+}, \\ (1 - \mu ) \cdot b_b + \mu \cdot b_\mu&> \mu \cdot (v + c_\mu ) + (1 - p_r) \cdot m + c_s. \end{aligned}$$

Given (30), (fraud/high level/disclose) is not a Nash equilibrium in pure strategies if either

$$\begin{aligned} z \in \left( 1 - \frac{K}{R^+}, \ \min \left\{ 1, \ 1 + \frac{(1 - p_d) \cdot p_r \cdot (R^+ + R^-) - K}{p_d \cdot R^+} \right\} \right) \end{aligned}$$
(56)

or

$$\begin{aligned} (1 - \mu ) \cdot b_b + \mu \cdot b_\mu < \mu \cdot (v + c_\mu ) + (1 - p_r) \cdot m + c_s \end{aligned}$$

or both.

1.3 Strategy tuple \({{s}}_{{3}} =\) (fraud/low level/hide):

  • The manager prefers fraud as in \(s_3\) to no fraud as in \(s_6\), since \({\mathcal {B}}^M > {\mathcal {D}}^M\) by (14).

  • The auditor prefers high level as in \(s_1\) to low level as in \(s_2\), since \({\mathcal {A}}^A > {\mathcal {B}}^A\) by (15).

\(\Rightarrow s_3\) cannot be a Nash equilibrium in pure strategies irrespective of the strategy choice of the employee.

1.4 Strategy tuple \({{s}}_{{4}} =\) (fraud/low level/disclose):

  • There is no alternative for the manager. He, therefore, chooses fraud as in \(s_4\).

  • The considerations of the auditor read along the line of the strategy tuple \(s_2\), see (54).

  • The employee prefers disclose as in \(s_4\) to hide as in \(s_3\), i.e. \(s_4 \succ s_3\), and vice versa, if

    $$\begin{aligned} s_4 \begin{Bmatrix} \succ \\ \prec \end{Bmatrix} s_3 \quad \Leftrightarrow \quad {\mathcal {B}}^E_d \begin{Bmatrix}> \\< \end{Bmatrix} {\mathcal {B}}^E \quad \Leftrightarrow \quad (1 - \mu ) \cdot b_b + \mu \cdot b_\mu \begin{Bmatrix} > \\ < \end{Bmatrix} \mu \cdot (v + c_\mu ) + m + c_s \end{aligned}$$
    (57)

    and we conclude

Lemma 2

Suppose that the manager, auditor and employee simultaneously choose one from their respective two strategies. Then, there exists a Nash equilibrium in the pure strategies (fraud/low level/disclose) if and only if

$$\begin{aligned} z&> 1 - \frac{K}{R^+}, \\ (1 - \mu ) \cdot b_b + \mu \cdot b_\mu&> \mu \cdot (v + c_\mu ) + m + c_s .\end{aligned}$$

(fraud/low level/disclose) is not a Nash equilibrium in pure strategies if either

$$\begin{aligned} z < 1 - \frac{K}{R^+} \end{aligned}$$

or

$$\begin{aligned} (1 - \mu ) \cdot b_b + \mu \cdot b_\mu < \mu \cdot (v + c_\mu ) + m + c_s \end{aligned}$$

or both.

1.5 Strategy tuple \({s}_{{5}} =\) (no fraud/high level/hide):

  • The manager prefers no fraud as in \(s_5\) to fraud as in \(s_1\), since \({\mathcal {A}}^M < {\mathcal {C}}^M\) by (13).

  • The auditor prefers low level as in \(s_6\) to high level as in \(s_5\), since \({\mathcal {C}}^A < {\mathcal {D}}^A\) by (16).

  • The employee has no alternative and chooses hide as in \(s_5\).

\(\Rightarrow s_5\) cannot be a Nash equilibrium in pure strategies.

1.6 Strategy tuple \({{s}}_{{6}} =\) (no fraud/low level/hide):

  • The manager prefers fraud as in \(s_3\) to no fraud as in \(s_6\), since \({\mathcal {B}}^M > {\mathcal {D}}^M\) by (14).

  • The auditor prefers low level as in \(s_6\) to high level as in \(s_5\), since \({\mathcal {C}}^A < {\mathcal {D}}^A\) by (16).

  • The employee has no alternative and chooses hide as in \(s_6\).

\(\Rightarrow s_6\) cannot be a Nash equilibrium in pure strategies.

Discussion of Nash equilibrium probabilities in the three-person inspection game with endogenous whistle-blowing

Recall \(v^g \equiv v + b_b\). Notice from (48) that \(\hat{p}_h^* \in (0,1)\) requires the probable appropriation of the board \(b_b\) and the possible national protection of the whistle-blower \(b_\mu\) to be such that

$$\begin{aligned} \mu \cdot (v + c_\mu ) + (1 - p_r) \cdot m + c_s< (1 - \mu ) \cdot b_b + \mu \cdot b_\mu < \mu \cdot (v + c_\mu ) + m + c_s, \end{aligned}$$
(58)

according to which \(s_4\) will not arise as a Nash equilibrium in pure strategies, see Lemma 2. In order to avoid that \(s_2\) may represent the Nash equilibrium, see Lemma 1, we consider (56) to hold in terms of \(z > 1 - \frac{K}{R^+}\).

To check for \(\hat{p}_d^*\) from (49) to attain a value between zero and one, be aware that its denominator is negative, see

$$\begin{array}{c} Y < 0\\ \Leftrightarrow \\ p_r \cdot \underbrace{(\Delta - \rho ^-)}_{> 0 \text { by (1)}} \cdot \underbrace{(\mu \cdot (v^g - b_\mu ^n) + c_s - b_b)}_{< 0 \text { by (58)}} - \kappa \cdot \underbrace{(\mu \cdot (v^g - b_\mu ^n) + m + c_s - b_b)}_{> 0 \text { by (58)}} < 0.\end{array}$$
(59)

The numerator, thus, must be negative as well so that \(\hat{p}_d^* > 0\). To guarantee this, recall that the manager’s costs in case of her fraud being revealed (\(\Delta\)) are assumed to exceed her long-term reputation loss if there is only the internal audit and it does not reveal the fraud (\(\rho ^-\)), see (1). A sufficient condition for a negative numerator is, then, given if \(\Delta\) is not too high in terms of

$$\begin{aligned} X< 0 \quad \Leftrightarrow \quad \Delta < \ \rho ^- + \underbrace{\frac{m}{\mu \cdot (v^g - b_\mu ^n) + m + c_s - b_b}}_{>1 \text { due to (58)}} \cdot \underbrace{(\Gamma - \rho ^-)}_{> 0 \text { by (14)}} \equiv \bar{\Delta }. \end{aligned}$$
(60)

For \(\hat{p}_d^* < 1\) to hold, we find that Z from (40) must be positive, i.e.

$$\begin{aligned} Z> 0 \quad \Leftrightarrow \quad \underbrace{\Gamma - \Delta }_{< 0 \text { by (2)}} < \underbrace{\frac{\kappa \cdot (\mu \cdot (v^g - b_\mu ^n) + m + c_s - b_b)}{p_r \cdot m}}_{> 0 \text { by (58)}}. \end{aligned}$$
(61)

Since the left-hand side is negative while the right-hand side is positive, \(Z > 0\) applies and \(\hat{p}_d^* \in (0,1)\) follows from (60).

Closer inspection of (50) shows that the numerator of \(\hat{p}_f^*\) is negative because of (16) and \(Z > 0\). Hence, in order for \(\hat{p}_f^* > 0\) to hold, the denominator must be negative as well. Since we generally have

$$\begin{aligned} \underbrace{((1-z) \cdot R^+ - K)}_{< 0 \text { since } z> 1 - \frac{K}{R^+} \text { by (56)}} \cdot \underbrace{X}_{< 0 \text { by (60)}} - \ \ \underbrace{(R^+ + R^-)}_{> 0 \text { by (15)}} \cdot \underbrace{Z}_{> 0 \text { by (61)}} \gtrless 0, \end{aligned}$$

it turns out that a sufficient condition for a negative denominator in (50) is

$$\begin{aligned} \frac{X}{Z} > \frac{R^+ + R^-}{(1 - z) \cdot R^+ - K}. \end{aligned}$$
(62)

Moreover, \(\hat{p}_f^* < 1\) requires that

$$\begin{aligned} \frac{X}{Z} > \frac{p_r \cdot (R^+ + R^-) - K}{p_r \left( (1 - z) \cdot R^+ - K \right) .} \end{aligned}$$
(63)

As the lower bound on \(X/Z\) from (63) is less negative than that in (62), we obtain \(\hat{p}_f^* \in (0,1)\) subject to (63), which is equivalent to

$$\begin{aligned}\Delta > \rho^-& + \frac{m}{\mu \cdot (v^g - b_{\mu} ^n) + m + c_s - b_b} \cdot (\Gamma - \rho ^-) \\ & + \frac{p_r \cdot (R^+ + R^-) - K}{p_r \cdot ((1 - z) \cdot R^+ -K)} \cdot \left(\kappa - \frac{p_r \cdot m \cdot (\Gamma - \Delta)}{\mu \cdot (v^g - b_{\mu} ^n) + m + c_s - b_b}\right) \equiv \underline{\Delta}.\end{aligned}$$
(64)

Notice that \(\underline{\Delta}\) from (64) is smaller than \(\bar{\Delta }\) from (60) as the third addend of the former is negative. It is, however, unclear whether or not \(\underline{\Delta}\) is in line with (1) via \(\underline{\Delta} > \rho ^-\). A feasible domain for \(\Delta\) subject to (1) is, therefore, given by \(\Delta\,\in\,\left (\max\{\rho ^-, \underline{\Delta}\}, \bar{\Delta }\right)\).

Comparative static analysis of (48), (49) and (50)

Recall \(v^g \equiv v + b_b\) and \(b_\mu ^n \equiv b_\mu - c_\mu\). Differentiating (48) with respect to the relevant parameters while taking account of (58) gives

$$\begin{aligned} \frac{\partial \hat{p}_h^*}{\partial m}&= - \frac{\mu \cdot (v^g - b_\mu ^n) + c_s - b_b}{p_r \cdot m^2}> 0, \\ \frac{\partial \hat{p}_h^*}{\partial v}&= - \frac{\partial \hat{p}_h^*}{\partial b_\mu ^n} = \frac{\mu }{p_r \cdot m}> 0, \\ \frac{\partial \hat{p}_h^*}{\partial b_b}&= - \frac{1 - \mu }{p_r \cdot m}< 0, \\ \frac{\partial \hat{p}_h^*}{\partial c_s}&= \frac{1}{p_r \cdot m}> 0, \\ \frac{\partial \hat{p}_h^*}{\partial p_r}&= - \frac{\mu \cdot (v^g - b_\mu ^n) + m + c_s - b_b}{p_r^2 \cdot m}< 0, \\ \frac{\partial \hat{p}_h^*}{\partial \mu }&= \frac{v^g - b_\mu ^n}{p_r \cdot m} \begin{Bmatrix}> \\< \end{Bmatrix} 0 \ \text { if } \ v^g + c_\mu \begin{Bmatrix} > \\ < \end{Bmatrix} b_\mu . \end{aligned}$$

Differentiating (49) with respect to the relevant parameters subject to (1), (2), (14), (58), \(X\) from (38) with \(X < 0\), see (60), \(Y\) from (39) with \(Y < 0\), see (59), leads to

$$\begin{aligned} \frac{\partial \hat{p}_d^*}{\partial \Gamma }&= - \frac{p_r \cdot m}{Y}> 0, \\ \frac{\partial \hat{p}_d^*}{\partial p_r}&= - \frac{X \cdot \kappa \cdot (\mu \cdot (v^g - b_\mu ^n) + m + c_s - b_b)}{Y^2}> 0, \\ \frac{\partial \hat{p}_d^*}{\partial \Delta }&= \frac{p_r \cdot \left( m \cdot (\Gamma - \rho ^-) \cdot p_r \cdot (\mu \cdot (v^g - b_\mu ^n) + c_s - b_b) - \kappa \cdot (\mu \cdot (v^g - b_\mu ^n) + m + c_s - b_b) \right) }{Y^2}< 0,\\ \frac{\partial \hat{p}_d^*}{\partial \rho ^-}&= \frac{p_r \cdot (\mu \cdot (v^g - b_\mu ^n) + c_s - b_b) \cdot \left( m \cdot p_r \cdot (\Delta - \Gamma ) + \kappa \cdot (\mu \cdot (v^g - b_\mu ^n) + m + c_s - b_b)\right) }{Y^2}< 0,\\ \frac{\partial \hat{p}_d^*}{\partial \kappa }&= \frac{p_r \cdot X \cdot (\mu \cdot (v^g - b_\mu ^n) + m + c_s - b_b)}{Y^2}< 0, \\ \frac{\partial \hat{p}_d^*}{\partial v}&= - \frac{\partial \hat{p}_d^*}{\partial b_\mu ^n} = - \frac{p_r \cdot m \cdot \mu \cdot \left( p_r \cdot (\Delta - \rho ^-) \cdot ( \Delta - \Gamma ) + \kappa \cdot (\Gamma - \rho ^-) \right) }{Y^2}< 0, \\ \frac{\partial \hat{p}_d^*}{\partial b_b}&= \frac{p_r \cdot (1 - \mu ) \cdot m \cdot \left( p_r \cdot (\Delta - \rho ^-)\cdot (\Delta - \Gamma ) +\kappa \cdot (\Gamma - \rho ^-) \right) }{Y^2}> 0, \\ \frac{\partial \hat{p}_d^*}{\partial c_s}&= - \frac{p_r \cdot m \cdot \left( p_r \cdot (\Delta - \rho ^-) \cdot (\Delta - \Gamma ) + \kappa \cdot (\Gamma - \rho ^-) \right) }{Y^2}< 0,\\ \frac{\partial \hat{p}_d^*}{\partial \mu }&= - \frac{p_r \cdot m \cdot (v^g - b_\mu ^n) \cdot \left( p_r \cdot (\Delta - \rho ^-) \cdot (\Delta - \Gamma ) + \kappa \cdot (\Gamma - \rho ^-) \right) }{Y^2} \begin{Bmatrix}< \\> \end{Bmatrix} 0 \ \text { if } \ v^g + c_\mu \begin{Bmatrix} > \\< \end{Bmatrix} b_\mu, \\ \frac{\partial \hat{p}_d^*}{\partial m}&= \frac{p_r \cdot \left( (\Delta - \Gamma ) \cdot Y + X \cdot \kappa \right) }{Y^2} < 0. \\ \end{aligned}$$

Let \(W \equiv \left( (1 - z) \cdot R^+ - K\right) \cdot X - (R^+ + R^-) \cdot Z\) with \(W < 0\) because of (62). Differentiating (50) with respect to the relevant parameters while exploiting (1), (2), (15), (16), \(z > 1 - \frac{K}{R^+}\) from (56), (58), \(X\) from (38) with \(X < 0\), see (60), \(Z\) from (40) with \(Z > 0\), see (61), yields

$$\begin{aligned} \frac{\partial \hat{p}_f^*}{\partial K}&= \frac{- Z \cdot W - K \cdot Z \cdot X}{p_r \cdot W^2}> 0,\\ \frac{\partial \hat{p}_f^*}{\partial z}&= - \frac{K \cdot Z \cdot R^+ \cdot X}{p_r \cdot W^2}> 0, \\ \frac{\partial \hat{p}_f^*}{\partial R^+}&= \frac{K \cdot Z \cdot \left( (1 - z) \cdot X - Z \right) }{p_r \cdot W^2}< 0,\\ \frac{\partial \hat{p}_f^*}{\partial R^-}&= - \frac{K \cdot Z^2}{p_r \cdot W^2}< 0,\\ \frac{\partial \hat{p}_f^*}{\partial p_r}&= \frac{K \cdot m \cdot (\Gamma - \Delta ) \cdot ((1 - z) \cdot R^+ - K) \cdot X}{p_r \cdot W^2}< 0, \\ \frac{\partial \hat{p}_f^*}{\partial \Gamma }&= - \frac{K \cdot m \cdot ((1 - z) \cdot R^+ - K) \cdot (Z - p_r \cdot X)}{p_r \cdot W^2}> 0,\\ \frac{\partial \hat{p}_f^*}{\partial \Delta }&= - \frac{K \cdot ((1 - z) \cdot R^+ - K) \cdot \left( p_r \cdot m \cdot X - Z \cdot (\mu \cdot (v^g - b_\mu ^n) + m + c_s - b_b) \right) }{p_r \cdot W^2}< 0, \\ \frac{\partial \hat{p}_f^*}{\partial \rho ^-}&= - \frac{K \cdot Z \cdot ((1 - z) \cdot R^+ - K) \cdot (\mu \cdot (v^g - b_\mu ^n) + c_s - b_b)}{p_r \cdot W^2}< 0,\\ \frac{\partial \hat{p}_f^*}{\partial \kappa }&= - \frac{K \cdot ((1 - z) \cdot R^+ - K) \cdot ( \mu \cdot (v^g - b_\mu ^n) + m + c_s - b_b) \cdot X}{p_r \cdot W^2}< 0, \\ \frac{\partial \hat{p}_f^*}{\partial v}&= - \frac{\partial \hat{p}_f^*}{\partial b_\mu ^n} = - \frac{K \cdot \mu \cdot ((1 - z) \cdot R^+ - K) \cdot (\kappa \cdot X - Z \cdot (\Delta - \rho ^-))}{p_r \cdot W^2}< 0,\\ \frac{\partial \hat{p}_f^*}{\partial c_s}&= - \frac{K \cdot ((1 - z) \cdot R^+ - K) \cdot (\kappa \cdot X - Z \cdot (\Delta - \rho ^-))}{p_r \cdot W^2}< 0, \\ \frac{\partial \hat{p}_f^*}{\partial b_b}&= \frac{K \cdot (1 - \mu ) \cdot \left( (1 - z) \cdot R^+ - K \right) \cdot \left( \kappa \cdot X - Z \cdot (\Delta - \rho ^-) \right) }{p_r \cdot W^2}> 0, \\ \frac{\partial \hat{p}_f^*}{\partial \mu }&= - \frac{K \cdot (v^g - b_\mu ^n) \cdot ((1 - z) \cdot R^+ - K) \cdot (\kappa \cdot X - Z \cdot (\Delta - \rho ^-))}{p_r \cdot W^2} \begin{Bmatrix}< \\> \end{Bmatrix} 0 \ \text { if } \ v^g + c_\mu \begin{Bmatrix} > \\< \end{Bmatrix} b_\mu, \\ \frac{\partial \hat{p}_f^*}{\partial m}&= - \frac{K \cdot ((1 - z) \cdot R^+ - K) \cdot \left( Z \cdot (\Gamma - \Delta ) + (\kappa + p_r \cdot (\Delta - \Gamma )) \cdot X \right) }{p_r \cdot W^2} < 0. \\ \end{aligned}$$

Proof of proposition 2

To prove proposition 2 (i), compare (17) and (48). Taking account of (1) and (58) results in

$$\begin{array}{lrcl} \hat{p}_h^* < p_h^* \\ \\ \Leftrightarrow \frac{\mu \cdot v + m + c - (1 - \mu) \cdot b_b - \mu \cdot b_s}{p_r \cdot m} < \frac{\Gamma - \rho^-}{p_r \cdot (\Delta - \rho^-)} \\ \\ \Leftrightarrow \Delta < \rho^- + \frac{m}{\mu \cdot v + m + c - (1 - \mu) \cdot b_b - \mu \cdot b_s} \cdot (\Gamma - \rho^-), \end{array}$$
(65)

which is true by (60).

We prove proposition 2 (ii) by comparing (18) and (50) conditional upon (15), the assumption of \(z > 1 - \frac{K}{R^+}\) from (56), \(X < 0\) from (60) and (62). We obtain

$$\begin{array}{lrcl} & \hat{p}_f^* & > & p_f^* \\ \\ \Leftrightarrow & \frac{- K \cdot Z}{p_r \cdot \left[ ((1 - z) \cdot R^+ - K) \cdot X - (R^+ + R^-) \cdot Z \right]} & > & \frac{K}{p_r \cdot (R^+ + R^-)} \\ \\ \Leftrightarrow & - Z \cdot (R^+ + R^-) & < & ((1 - z) \cdot R^+ - K) \cdot X - (R^+ + R^-) \cdot Z \\ \\ \Leftrightarrow & 0 & < & ((1 - z) \cdot R^+ - K) \cdot X, \end{array}$$

which is true.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Siggelkow, B.F., Trockel, J. & Dieterle, O. An inspection game of internal audit and the influence of whistle-blowing. J Bus Econ 88, 883–914 (2018). https://doi.org/10.1007/s11573-018-0893-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11573-018-0893-9

Keywords

JEL Classification:

Navigation