Skip to main content
Log in

Klein–Gordon equations with homogeneous time-dependent electric fields

  • Published:
ANNALI DELL'UNIVERSITA' DI FERRARA Aims and scope Submit manuscript

Abstract

We consider a system associated to Klein–Gordon equations with homogeneous time-dependent electric fields. The upper and lower boundaries of a time-evolution propagator for this system were proven by Veselić (J Oper Theory 25:319–330, 1991) for electric fields that are independent of time. We extend this result to time-dependent electric fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adachi, T., Ishida, A.: Scattering in an external electric field asymptotically constant in time. J. Math. Phys. 52, 162101 (2011)

    Article  MathSciNet  Google Scholar 

  2. Avron, J.E., Herbst, I.W.: Spectral and scattering theory of Schrödinger operators related to the Stark effect. Commun. Math. Phys. 52, 239–254 (1977)

    Article  Google Scholar 

  3. Böhme, C., Reissig, M.: A scale-invariant Klein–Gordon model with time-dependent potential. Ann. Del. Univ. Di Ferrara 58, 229–250 (2012)

    Article  MathSciNet  Google Scholar 

  4. Böhme, C., Reissig, M.: Energy bounds for Klein–Gordon equations with time-dependent potential. Ann. Del. Univ. Di Ferrara 59, 31–55 (2013)

    Article  MathSciNet  Google Scholar 

  5. Cycon, H.L., Froese, R.G., Kirsch, W., Simon, B.: Schrödinger Operators with Application to Quantum Mechanics and Global Geometry, Texts and Monographs in Physics, Springer Study Edition. Springer, Berlinhme (1987)

    MATH  Google Scholar 

  6. Carles, R., Nakamura, Y.: Nonlinear Schrödinger equations with Stark potential. Hokkaido Math. J. 3, 719–729 (2004)

    Article  Google Scholar 

  7. Eliezer, S., Raicher, E., Zigler, A.: A novel solution to the Klein–Gordon equation in the presence of a strong rotating electric field. Phys. Lett. B 750, 76–81 (2015)

    Article  MathSciNet  Google Scholar 

  8. Hochstadt, H.: Function theoretic properties of the discriminant of Hill’s equation. Math. Z. 82, 237–242 (1963)

    Article  MathSciNet  Google Scholar 

  9. Hochstadt, H.: On the determination of a Hill’s equation from its spectrum. Arch. Ration. Mech. Anal. 19, 353–362 (1965)

    Article  MathSciNet  Google Scholar 

  10. Møller, J.S.: Two-body short-range systems in a time-periodic electric field. Duke Math. J. 105, 135–166 (2000)

    Article  MathSciNet  Google Scholar 

  11. Najman, B.: Solution of a differential equation in a scale of space. Glasnik Mat. 14(34), 119–127 (1979)

    MathSciNet  MATH  Google Scholar 

  12. Narozhnyi, N.B., Nikishov, A.I.: Solutions of the Klein–Gordon and Dirac equations for a particle in a constant electric field and a plane electromagnetic wave propagation along the field. Theor. Math. Phys. 26, 9–20 (1976)

    Article  Google Scholar 

  13. Tanji, N.: Dynamical view of pair creation in uniform electric and magnetic fields. Ann. Phys. 324, 1691–1736 (2009)

    Article  Google Scholar 

  14. Todorova, G., Yordanov, B.: Weighted \(L^2\)-estimates for dissipative wave equations with variable coefficients. J. Differ. Eqn. 246, 4497–4518 (2009)

    Article  MathSciNet  Google Scholar 

  15. Veselić, K.: A spectral theory of the Klein–Gordon equation involving a homogeneous electric field. J. Oper. Theory 25, 319–330 (1991)

    MathSciNet  MATH  Google Scholar 

  16. Wirth, J.: Wave equations with time-dependent dissipation I. Non-effective dissipation. J. Differ. Equ. 222, 487–514 (2006)

    Article  MathSciNet  Google Scholar 

  17. Wirth, J.: Wave equations with time-dependent dissipation II. Effective dissipation. J. Differ. Equ. 232, 74–103 (2007)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masaki Kawamoto.

Appendices

Appendix A: Klein–Gordon systems with electric fields

In this section, we construct the (Hamilton) system equation in (2). This construction is the same one in [15]. Denote

$$\begin{aligned} \varPsi _0 (t,x) = \left( \begin{array}{cccccccccc}\psi _0(t,x) \\ \psi _{0,1}(t,x)\end{array}\right) , \quad \psi _{0,1}(t,x) := ( i \partial _t +q_E) \psi _0 (t,x), \quad \varPsi _0 = \left( \begin{array}{cccccccccc}\psi _{0,0} \\ \psi _{0,1}\end{array}\right) , \end{aligned}$$

where \(\psi _0 (t,x)\), \(\psi _{0,0}\), and \(\psi _{0,1}\) are the same as those defined in (2). Then \(\varPsi _0 (t,x)\) satisfies the following equations:

$$\begin{aligned}&i\frac{\partial }{\partial t} \varPsi _0(t,x) = A_0(t) \varPsi _0(t,x), \quad A_0(t) = \left( \begin{array}{cccccccccc}-q_E &{} 1 \\ L (0,p) &{} -q_E\end{array}\right) , \quad \varPsi _0 (0,x) = \varPsi _0. \end{aligned}$$
(38)

Here, we set \(\zeta _j (t, \xi )\) to be that defined in (14) (or (17) and (18)). Focusing on \(\zeta ''_j (t,\xi ) = - L(t,\xi ) \zeta _j (t,\xi )\), \(j \in \{0,1\}\), a propagator for \(A_0 (t)\), \(U_{A_0} (t)\) can be described by

$$\begin{aligned} U_{A_0} (t) = \left( e^{ib(t) \cdot x}\right) _M \left( \begin{array}{cccccccccc} \zeta _0 (t,p) &{} \zeta _1 (t,p) \\ i \zeta _0 '(t,p) &{} i \zeta _1 '(t,p)\end{array}\right) . \end{aligned}$$
(39)

Indeed,

$$\begin{aligned} i \frac{\partial }{\partial t} U_{A_0} (t)&= (e^{ib(t) \cdot x})_M (i \partial _t -qE(t) \cdot x)_M ({\mathscr {F}_1^{-1}})_M\left( \begin{array}{cccccccccc}\zeta _0(t,\xi ) &{} \zeta _1 (t,\xi ) \\ i \zeta _0'(t,\xi ) &{} i \zeta _1 '(t,\xi )\end{array}\right) ({\mathscr {F}}_1^{+1})_M \\&=(e^{ib(t) \cdot x})_M ({\mathscr {F}}_1^{-1})_M \Bigg \{\left( \begin{array}{cccccccccc}-qE (t)\cdot x &{} 0 \\ 0 &{} -qE(t) \cdot x\end{array}\right) \left( \begin{array}{cccccccccc}\zeta _0(t,\xi ) &{} \zeta _1 (t,\xi ) \\ i \zeta _0'(t,\xi ) &{} i \zeta _1 '(t,\xi )\end{array}\right) \\&\quad + \left( \begin{array}{cccccccccc}i\zeta _0'(t,\xi ) &{} i\zeta _1'(t,\xi ) \\ L(t,\xi ) \zeta _0(t,\xi ) &{} L(t,\xi ) \zeta _1 (t,\xi )\end{array}\right) \Bigg \}({\mathscr {F}}_1^{+1})_M \\&=(e^{ib(t) \cdot x})_M \left( \begin{array}{cccccccccc}-q_E &{} 1 \\ L(t,p) &{} -q_E\end{array}\right) \left( \begin{array}{cccccccccc}\zeta _0(t,p) &{} \zeta _1 (t,p) \\ i \zeta _0'(t,p) &{} i \zeta _1'(t,p)\end{array}\right) = A_0(t) U_{A_0}(t), \end{aligned}$$

where \(e^{ib(t) \cdot x} L(t,p) e^{-ib(t) \cdot x} = L(0,p) \) and \((i \partial _t) e^{ib(t) \cdot x} = e^{ib(t) \cdot x} (i \partial _t -b'(t) \cdot x)\).

Next, we define

$$\begin{aligned} {\mathscr {F}} = ({\mathscr {F}}_{1}^{+1})_M , \quad {\mathscr {F}}^{-1} = ({\mathscr {F}}_1^{-1})_M, \end{aligned}$$
(40)

and set

$$\begin{aligned} K_{\alpha } (0,p)&= \left( \begin{array}{cccccccccc}(L (0,p) )^{1/2- \alpha }&{} 0 \\ 0 &{} (L(0,p))^{-1/2 - \alpha }\end{array}\right) , \nonumber \\ K_{\alpha } (0.p)\varPhi&= {\mathscr {F}}^{-1} K_{\alpha }(0 ,\xi ){\mathscr {F}}\varPhi , \end{aligned}$$
(41)
$$\begin{aligned} {\mathscr {K}}_{\alpha }&= L^{1/4-\alpha /2} L^2(\mathbf{R}^n) \times L^{-1/4-\alpha /2}L^2(\mathbf{R}^n) , \end{aligned}$$
(42)

for \(\alpha \in \mathbf{R}\) and \(\varPhi \in {\mathscr {D}}( K_{\alpha } )\), where \(L^{j} L^2(\mathbf{R}^n)\), \(j\in \mathbf{R}\) is defined as the norm space with respect to the norm

$$\begin{aligned} \left\| u \right\| _{L^{j}L^2(\mathbf{R}^n)} := \left\| (L(0, \xi ))^j \hat{u} (\xi ) \right\| _{L^2(\mathbf{R}^n_{\xi })}, \quad u\in {\mathscr {F}}_1^{-1} {\mathscr {D}}( (L(0, \xi ))^j ). \end{aligned}$$

Furthermore, we define

$$\begin{aligned} \left( u , v \right) _{{{\mathscr {K}}_{\alpha }}}&:= \left( {K}_{\alpha }(0,\xi ) {\mathscr {F}} u , {\mathscr {F}} v \right) _{{\mathscr {H}}}, \quad {\mathscr {F}}u, \ {\mathscr {F}}v \in {\mathscr {D}}( K_{\alpha } (0, \xi ) ), \nonumber \\ K_{\alpha }^{1/2}&:= (K_{\alpha } (0,p))^{1/2} = \left( \begin{array}{cccccccccc}(L(0,p))^{1/4 - \alpha /2} &{} 0 \\ 0 &{} (L(0,p))^{-1/4 - \alpha /2}\end{array}\right) , \nonumber \\ \varPhi _{0, \alpha } (t,x)&= K_{\alpha }^{1/2} \varPsi _{0, \alpha } (t,x), \quad \varPhi _{0, \alpha } (0,x) = \varPhi _{0,\alpha } = K^{1/2}_{\alpha } \varPsi _{0}. \end{aligned}$$
(43)

It can be shown that for \(u = (u_1,u_2)^{\mathrm {T}}\),

$$\begin{aligned} \left( u ,u \right) _{{\mathscr {K}}_{\alpha }}&= \left( (L(0, \xi ))^{1/2 - \alpha } \hat{u}_1, \hat{u}_1 \right) _{L^2(\mathbf{R}^n)} + \left( (L(0, \xi ))^{-1/2 - \alpha } \hat{u}_2 , \hat{u} _2 \right) _{L^2(\mathbf{R}^n)} \\&=\left\| (L(0,\xi ))^{1/4 - \alpha /2} \hat{u}_1 \right\| _{L^2(\mathbf{R}^n)}^2 + \left\| (L(0, \xi ))^{-1/4-\alpha /2} \hat{u}_2 \right\| _{L^2(\mathbf{R}^n)}^2 = \left\| u \right\| _{{\mathscr {K}}_{\alpha }}^2. \end{aligned}$$

Thus, \((\cdot , \cdot )_{{\mathscr {K}}_{\alpha }}\) is the inner product of \({\mathscr {K}}_{\alpha }\). Moreover, notice that for \(\varPsi _{0} \in {\mathscr {K}}_{\alpha }\), \(\left\| \varPhi _{0,\alpha }\right\| _{{\mathscr {H}}} ^2 = (K _{\alpha } \varPsi _{0}, \varPsi _{0})_{{\mathscr {H}}} = \left\| \varPsi _{0}\right\| _{{\mathscr {K}}_{\alpha }}\), i.e., \(\varPhi _{0,\alpha } \in {\mathscr {H}}\). We then define the system

$$\begin{aligned} i \frac{\partial }{ \partial t} \varPhi _{0, \alpha } (t,x)&= H_{0, \alpha } (t) \varPhi _{0, \alpha } (t,x), \nonumber \\ \varPhi _{0, \alpha }(0,x)&= \varPhi _{0,\alpha } , \nonumber \\ H_{0, \alpha } (t)&= K^{1/2}_{\alpha } A_0 (t) (K^{1/2}_{\alpha })^{-1}. \end{aligned}$$
(44)

on the Hilbert space \({\mathscr {H}}\). In the same way, \(U_{0, \alpha }(t) \), the propagator for \(H_{0,\alpha } (t)\), can be written as

$$\begin{aligned} U_{0,\alpha }(t)&= K^{1/2}_{\alpha } U_{A_0} (t) (K^{1/2}_{\alpha })^{-1}, \nonumber \\ U_{0, \alpha }(t) ^{-1}&= K_{\alpha }^{1/2} U_{A_0} (t) ^{-1} (K_{\alpha }^{1/2})^{-1}, \end{aligned}$$
(45)

and we obtain the system

$$\begin{aligned} i \frac{d}{dt} U_{0, \alpha } (t) \varPhi _{0, \alpha } = H_{0, \alpha }(t) U_{0, \alpha } (t) \varPhi _{0, \alpha } , \quad \varPhi _{0, \alpha } \in {\mathscr {H}} \end{aligned}$$
(46)

with Hilbert space \({\mathscr {H}}\) and complex valued energy \(H_{0, \alpha } (t)\). Straightforward calculations show that \(H_{0, \alpha }(t)\) can be written as

$$\begin{aligned} \left( \begin{array}{cccccccccc}(L(0,p))^{1/4- \alpha /2}(-q_E) (L(0,p))^{-1/4 + \alpha /2} &{} (L(0,p))^{1/2} \\ (L(0,p))^{1/2} &{} (L(0,p))^{-1/4 - \alpha /2}(-q_E)(L(0,p))^{1/4 + \alpha /2} \end{array}\right) . \end{aligned}$$

Noting that for an invertible smooth function F and its inverse \(F^{-1 }\),

$$\begin{aligned} F(p)^{-1} x F(p)&= {\mathscr {F}}_1^{-1} F(\xi )^{-1} {\mathscr {F}}_1^{+1} x {\mathscr {F}}_1^{-1} F(\xi ) {\mathscr {F}}_1^{+1} , \quad ({\mathscr {F}}_{1}^{+1} x {\mathscr {F}}_1^{-1} = i \nabla _{\xi }), \\&= {\mathscr {F}}_1^{-1} F(\xi )^{-1} (i \nabla F)(\xi ) {\mathscr {F}}_1^{+1} + {\mathscr {F}}_1^{-1} F(\xi )^{-1} F(\xi ) {\mathscr {F}}_1^{+1} x {\mathscr {F}}_1^{-1} {\mathscr {F}}_1^{+1} \\&= i F(p)^{-1}(\nabla F)(p) + x \end{aligned}$$

holds. Hence, \((L(0,p))^{- \theta } qE \cdot x (L(0,p))^{\theta } = qE \cdot x + 2 i c^2 \theta qE \cdot p (L(0,p))^{-1}\), and \(H_{0, \alpha } (t)\) can be decomposed into \(\hat{H}_{0, \alpha } (t) = \hat{H}_0 (t) + P_{0, \alpha } (t)\) ; \(\hat{H}_0 (t)\) and \(P_{0, \alpha } (t)\) are the same as those defined in (5) and (6), respectively. Here, \(\hat{H}_0 (t)\) is a symmetric operator (self-adjoint operator for every fixed t, see Lemma 2.1. of [15]), but \(P_0(t)\) is a non-symmetric operator (clearly, it is a complex valued operator).

Appendix B: models of time-dependent electric fields

Here, we give examples of electric fields satisfying Assumption (E1). First, we assume that b(t) satisfies \(b(t) = (0, 0, \dots , 0,b_j(t),0,\ldots ,0)\), \(j \in \{1,2,\ldots ,n\}\), and \(b_j(t)\) can be written as

$$\begin{aligned} b_j(t) = {\left\{ \begin{array}{ll} C_{\gamma } t^{\gamma } + \rho _{\gamma } (t) &{} 0< \gamma < 1, \\ C_1 t + \rho _1 (t) + \theta _1 (t) &{} \gamma = 1, \end{array}\right. } \end{aligned}$$
(47)

where \(C_{\gamma } \ne 0\) is a constant, \(\rho _{\gamma } \in C^2(\mathbf{R}^n) \) satisfies \(| \rho ^{(l)}_{\gamma } (t) | = o(t^{\gamma - l}) \) for \(l \in \{0,1,2\}\), and \(| \theta ^{(l)}_{1} (t) | \le C \) for \(l\in \{0,1,2\}\). It can easily be shown that

$$\begin{aligned} \int _{|a + b(s)| \le 2E_{0,0}/(mc^2)} |b'(s)| ds&\le \int _{|a_j +b_j(s) | \le 2E_{0,0}/(mc^2)} |b_j'(s)| ds \nonumber \\&\le \left| \int _{|\tau | \le 2E_{0,0}/(mc^2)} \frac{|b_j'(s)|}{b_j'(s)} d \tau \right| \le C \end{aligned}$$
(48)

and

$$\begin{aligned}&\int _0^t \frac{|b'(s)|^2 + |b''(s)|}{Q(s, a) ^2} ds \\&\le C_{R} + \int _{R}^t \frac{ |b'_j(s)|^2+ |b_j''(s)| }{c^2(a_j + C_{\gamma } s^{\gamma } + \rho _{\gamma } (s) + \theta _{\gamma } (s) )^2 + (mc^2)^2} ds \\&\le C_{R} + C \sup _{s > R} \left| s^{1- \gamma } (|b'_j(s)|^2 + |b''_j(s) |) \right| \int _{-\infty }^{\infty } \frac{d \tau }{c^2 (\tau + \theta _{\gamma } (s))^2) + (mc^2)^2 } d \tau \end{aligned}$$

hold, where \(\theta _{\gamma } (s) \equiv 0\) for \(\gamma < 1\). By dividing the limits of integration into two regions, \(|\tau | \le 2 |\theta _{\gamma } (s)| \le C \) and \(|\tau | \ge 2 |\theta _{\gamma } (s)|\), notice that the last term of the above inequality is smaller than

$$\begin{aligned} C \sup _{s > R} \left| s^{1- \gamma } ( |b'_j(s)|^2 + |b''_j(s) | ) \right| \left( \int _{|\tau | \le C} d \tau + \int _{|\tau | \ge 2|\theta _{\gamma } (s)|} \frac{d \tau }{c^2 \tau ^2 /4 + (mc^2)^2} \right) \le C, \end{aligned}$$

where (47) is utilized. Next, assume \(b(t) = (0,\ldots ,0,b_j(t),0\ldots ,0)\) and \(b_j(t)\) can be written as

$$\begin{aligned} b_j(t) = e_3 (\log (1 + e_4 |t|)), \end{aligned}$$

where \(e _3 \ne 0\) and \(e_4 > 0\) are constants. By the same approach as (48),we obtain the left-hand side of (7) for this particular b(t). Moreover, by using the fact that \((b'_j (s)) ^2\) and \(b''_j(s)\) are integrable on \([R, \infty )\), the right-hand side of (7) can also be obtained for this b(t).

Remark 1

Suppose b(t) satisfies \(b(t) = (0,\ldots ,0,b_{j1}(t),0,\ldots ,0,b_{j2} (t),0,\dots ,0 )\) and \(b_{j1} (t)\) and \(b_{j2} (t)\) are written in the same form as (47) by replacing \(\gamma \rightarrow \gamma _1\) and \(\gamma \rightarrow \gamma _2\), respectively. Then it is sufficient to consider the same approach as above for the maximum of \(\{ \gamma _1 , \gamma _2\}\); indeed, suppose \(\gamma _1 \ge \gamma _2\). Noting that

$$\begin{aligned} \int _{| a + b(s)| \le 2E_{0,0}/(mc^2)} |b'(s)| ds \le C_R + C \int _{\mathop { |a_{j1} + b_{j1}(s)| \le 2E_{0,0}/(mc^2)}\limits _{s \ge R} |b_{j1}'(s)| ds} \end{aligned}$$

and

$$\begin{aligned} \int _R^t \frac{|b'(s)|^2 + |b''(s)|}{Q(s, a)^2} ds \le C \int _{R}^{t} \frac{|b'_{j1} (s)|^2 + |b''_{j1} (s)|}{c^2(a_{j1} + b_{j1} (s))^2 + (mc^2)^2} ds, \end{aligned}$$

it is straightforward to prove that (7) mimics the above approach. Similarly, we consider the case when \(b(t) = (b_1 (t), \ldots , b_n(t))\). However, if AC electric fields are included in E(t), (7) is difficult to prove. For example, consider the case when \(b_{j1}(t) = t^{ \gamma }\) and \(b_{j2} (t) = t^{ \gamma /2} + \cos t\) with \(0< \gamma <1\), i.e., \(| b_{j1}(t) | \ge |b_{j2} (t)|\) holds for \(t \gg 1\), but \(|b^{(1)}_{j1} (t)| \ge |b^{(l)}_{j2} (t)|\), \(l \in \{1,2\}\), is not always true. Clearly, \(s^{1- \gamma } (|b''(s)| + |b'(s)|)\) is not bounded; hence, our proof fails. Other approaches must be established to consider more general electric fields including AC electric fields.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kawamoto, M. Klein–Gordon equations with homogeneous time-dependent electric fields. Ann Univ Ferrara 64, 389–406 (2018). https://doi.org/10.1007/s11565-017-0294-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11565-017-0294-y

Keywords

Mathematics Subject Classification

Navigation