Skip to main content
Log in

Single-Mode to Multi-Mode Crossover in Thin-Load Polymethyl Methacrylate Plasmonic Waveguides

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

Mode character and mode dispersion of sub-60-nm-thick polymethyl methacrylate dielectric-loaded surface plasmon-polariton waveguides (DLSPPWs) are investigated using photoemission electron microscopy and finite element method simulations. Experiment and simulation show excellent agreement and allow identifying a crossover from single-mode to multi-mode waveguiding as a function of excitation wavelength λ and DLSSPW cross section. Experiment and simulations yield, furthermore, indications for the formation of a surface plasmon-polariton cavity mode in the close vicinity of the waveguides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. UV light can potentially cause damage to the chemical structure of PMMA such as cleavage of bonds. These alterations are reported for deep UV (254 nm,  = 4.9 eV) [26]; in fact, PMMA is routinely used as a resist for UV lithography [27].

References

  1. Charbonneau R, Berini P, Berolo E, Lisicka-Shrzek E (2000) Experimental observation of plasmon-polariton waves supported by a thin metal film of finite width. Opt Lett 25:844–846. https://doi.org/10.1364/OL.25.000844

    Article  CAS  PubMed  Google Scholar 

  2. Berini P (1999) Plasmon-polariton modes guided by a metal film of finite width. Opt Lett 24:1011–1013. https://doi.org/10.1364/OL.24.001011

    Article  CAS  PubMed  Google Scholar 

  3. Berini P (2000) Plasmon-polariton waves guided by thin lossy metal films of finite width: bound modes of symmetric structures. Phys Rev B 61:10484–10503. https://doi.org/10.1103/PhysRevB.61.10484

    Article  CAS  Google Scholar 

  4. Pile DFP, Ogawa T, Gramotnev DK et al (2005) Two-dimensionally localized modes of a nanoscale gap plasmon waveguide. Appl Phys Lett 87:1–3. https://doi.org/10.1063/1.2149971

    Article  CAS  Google Scholar 

  5. Tanaka K, Tanaka M, Katayama K (2008) Simulations of nanometric optical circuits by surface plasmon polariton gap waveguide. Math Methods Electromagn Theory, MMET, Conf Proc 1158:59–64. https://doi.org/10.1109/MMET.2008.4580897

    Article  Google Scholar 

  6. Davoyan AR, Shadrivov IV, Kivshar YS (2008) Nonlinear plasmonic slot waveguides. Opt Express 16:21209–21214. https://doi.org/10.1364/OE.16.021209

    Article  PubMed  Google Scholar 

  7. Gramotnev DK, Pile DFP (2004) Single-mode subwavelength waveguide with channel plasmon-polaritons in triangular grooves on a metal surface. Appl Phys Lett 85:6323. https://doi.org/10.1063/1.1839283

    Article  CAS  Google Scholar 

  8. Bozhevolnyi SI, Volkov VS, Devaux E, Ebbesen TW (2005) Channel plasmon-polariton guiding by subwavelength metal grooves. Phys Rev Lett 95:1–4. https://doi.org/10.1103/PhysRevLett.95.046802

    Article  CAS  Google Scholar 

  9. Krenn JR, Lamprecht B, Ditlbacher H et al (2007) Non-diffraction-limited light transport by gold nanowires. Europhys Lett 60:663–669. https://doi.org/10.1209/epl/i2002-00360-9

    Article  Google Scholar 

  10. Schider G, Krenn J, Hohenau a et al (2003) Plasmon dispersion relation of Au and Ag nanowires. Phys Rev B 68:1–4. https://doi.org/10.1103/PhysRevB.68.155427

    Article  CAS  Google Scholar 

  11. Krenn JR (2003) Nanoparticle waveguides: watching energy transfer. Nat Mater 2:210–211. https://doi.org/10.1038/nmat865

    Article  CAS  PubMed  Google Scholar 

  12. Leißner T, Lemke C, Jauernik S et al (2013) Surface plasmon polariton propagation in organic nanofiber based plasmonic waveguides. Opt Express 21:8251. https://doi.org/10.1364/OE.21.008251

    Article  CAS  PubMed  Google Scholar 

  13. Biagi G, Fiutowski J, Radko IP et al (2015) Compact wavelength add–drop multiplexers using Bragg gratings in coupled dielectric-loaded plasmonic waveguides. Opt Lett 40:2429. https://doi.org/10.1364/OL.40.002429

    Article  CAS  PubMed  Google Scholar 

  14. Zhang X-Y, Zhang T, A-M H et al (2011) Tunable microring resonator based on dielectric-loaded surface plasmon polariton waveguides. J Nanosci Nanotechnol 11:10520–10524. https://doi.org/10.1166/jnn.2011.4094

    Article  CAS  PubMed  Google Scholar 

  15. Krasavin AV, Zayats AV (2010) All-optical active components for dielectric-loaded plasmonic waveguides. Opt Commun 283:1581–1584. https://doi.org/10.1016/j.optcom.2009.08.054

    Article  CAS  Google Scholar 

  16. Chen JG, Zhang T, Zhu JS et al (2009) Low-loss planar optical waveguides fabricated from polycarbonate. Polym Eng Sci 49:2015–2019. https://doi.org/10.1002/pen.21441

    Article  CAS  Google Scholar 

  17. Holmgaard T, Chen Z, Bozhevolnyi SI et al (2008) Bend- and splitting loss of dielectric-loaded surface plasmon-polariton waveguides. Opt Express 16:13585–13592. https://doi.org/10.1364/OE.16.013585

    Article  CAS  PubMed  Google Scholar 

  18. Steinberger B, Hohenau A, Ditlbacher H et al (2007) Dielectric stripes on gold as surface plasmon waveguides: bends and directional couplers. Appl Phys Lett 91:10–13. https://doi.org/10.1063/1.2772774

    Article  CAS  Google Scholar 

  19. Holmgaard T, Bozhevolnyi SI (2007) Theoretical analysis of dielectric-loaded surface plasmon-polariton waveguides. Phys Rev B 75:245405. https://doi.org/10.1103/PhysRevB.75.245405

    Article  CAS  Google Scholar 

  20. Leißner T, Lemke C, Fiutowski J et al (2013) Morphological tuning of the plasmon dispersion relation in dielectric-loaded nanofiber waveguides. Phys Rev Lett 111:46802. https://doi.org/10.1103/PhysRevLett.111.046802

    Article  CAS  Google Scholar 

  21. Leißner T, Thilsing-Hansen K, Lemke C et al (2012) Surface plasmon polariton emission prompted by organic nanofibers on thin gold films. Plasmonics 7:253–260. https://doi.org/10.1007/s11468-011-9301-9

    Article  CAS  Google Scholar 

  22. Holmgaard T, Chen Z, Bozhevolnyi SI et al (2009) Dielectric-loaded plasmonic waveguide-ring resonators. Opt Express 17:2968. https://doi.org/10.1364/OE.17.002968

    Article  CAS  PubMed  Google Scholar 

  23. Oulton RF, Sorger VJ, Genov DA et al (2008) A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation. Nat Photonics 2:496–500. https://doi.org/10.1038/nphoton.2008.131

    Article  CAS  Google Scholar 

  24. Grandidier J, Massenot S, des Francs GC et al (2008) Dielectric-loaded surface plasmon polariton waveguides: figures of merit and mode characterization by image and Fourier plane leakage microscopy. Phys Rev B 245419:78. https://doi.org/10.1103/PhysRevB.78.245419

    Article  CAS  Google Scholar 

  25. Swiech W, Fecher G, Ziethen C et al (1997) Recent progress in photoemission microscopy with emphasis on chemical and magnetic sensitivity. J Electron Spectros Relat Phenom 84:171–188. https://doi.org/10.1016/S0368-2048(97)00022-4

    Article  CAS  Google Scholar 

  26. Johnstone RW, Foulds IG, Parameswaran M (2008) Deep-UV exposure of poly(methyl methacrylate) at 254 nm using low-pressure mercury vapor lamps. J Vac Sci Technol B Microelectron Nanom Struct 26:682. https://doi.org/10.1116/1.2890688

    Article  CAS  Google Scholar 

  27. Lin BJ (1975) Deep uv lithography. J Vac Sci Technol 12:1317. doi: https://doi.org/10.1116/1.568527

  28. Lemke C, Leißner T, Klick A et al (2013) The complex dispersion relation of surface plasmon polaritons at gold/para-hexaphenylene interfaces. Appl Phys B Lasers Opt 116:585–591. https://doi.org/10.1007/s00340-013-5737-2

    Article  CAS  Google Scholar 

  29. Schindelin J, Arganda-Carreras I, Frise E et al (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9:676–682. https://doi.org/10.1038/nmeth.2019

    Article  CAS  Google Scholar 

  30. Edelstein A, Amodaj N, Hoover K, et al (2010) Computer control of microscopes using μManager. Curr Protoc Mol Biol Chapter 14:Unit14.20. doi: https://doi.org/10.1002/0471142727.mb1420s92

  31. Joens MS, Huynh C, Kasuboski JM et al (2013) Helium ion microscopy (HIM) for the imaging of biological samples at sub-nanometer resolution. Sci Rep 3:3514. https://doi.org/10.1038/srep03514

    Article  PubMed  PubMed Central  Google Scholar 

  32. Kubo A, Pontius N, Petek H (2007) Femtosecond microscopy of surface plasmon polariton wave packet evolution at the silver/vacuum interface. Nano Lett 7:470–475. https://doi.org/10.1021/nl0627846

    Article  CAS  PubMed  Google Scholar 

  33. Klick A, de la Cruz S, Lemke C et al (2016) Amplitude and phase of surface plasmon polaritons excited at a step edge. Appl Phys B Lasers Opt 122:79. https://doi.org/10.1007/s00340-016-6350-y

    Article  CAS  Google Scholar 

  34. Kogelnik H, Ramaswamy V (1974) Scaling rules for thin-film optical waveguides. Appl Opt 13:1857–1862. https://doi.org/10.1364/AO.13.001857

    Article  CAS  PubMed  Google Scholar 

  35. Chang THP (1975) Proximity effect in electron-beam lithography. J Vac Sci Technol 12:1271–1275. https://doi.org/10.1116/1.568515

    Article  Google Scholar 

  36. Owen G, Rissman P (1983) Proximity effect correction for electron beam lithography by equalization of background dose. J Appl Phys 54:3573–3581. https://doi.org/10.1063/1.332426

    Article  CAS  Google Scholar 

  37. Owen G (1990) Methods for proximity effect correction in electron lithography. J Vac Sci Technol B Microelectron Nanom Struct 8:1889. https://doi.org/10.1116/1.585179

    Article  Google Scholar 

  38. Samardak A, Anisimova M, Samardak A, Ognev A (2015) Fabrication of high-resolution nanostructures of complex geometry by the single-spot nanolithography method. Beilstein J Nanotechnol 6:976–986. https://doi.org/10.3762/bjnano.6.101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Weeber J-C, Hassan K, Saviot L et al (2012) Efficient photo-thermal activation of gold nanoparticle-doped polymer plasmonic switches. Opt Express 20:27636–27649. https://doi.org/10.1364/OE.20.027636

    Article  CAS  PubMed  Google Scholar 

  40. Welch PD (1967) The use of fast Fourier transform for the estimation of power spectra: a method based on time averaging over short, modified periodograms. IEEE Trans Audio Electroacoust 15:70–73. https://doi.org/10.1109/TAU.1967.1161901

    Article  Google Scholar 

Download references

Acknowledgements

This work was funded by the German Research Foundation (DFG) through the Collaborative Research Center 677 “Function by Switching.”

Jacek Fiutowski, Jost Adam, and Till Leißner thank the Fabrikant Mads Clausen’s Foundation for a research grant supporting this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Malte Großmann.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Großmann, M., Thomaschewski, M., Klick, A. et al. Single-Mode to Multi-Mode Crossover in Thin-Load Polymethyl Methacrylate Plasmonic Waveguides. Plasmonics 13, 1441–1448 (2018). https://doi.org/10.1007/s11468-017-0649-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-017-0649-3

Keywords

Navigation