Skip to main content
Log in

“Speculative Influence Network” during financial bubbles: application to Chinese stock markets

  • Regular Article
  • Published:
Journal of Economic Interaction and Coordination Aims and scope Submit manuscript

Abstract

We introduce the Speculative Influence Network (SIN) to decipher the causal relationships between sectors (and/or firms) during financial bubbles. The SIN is constructed in two steps. First, we develop a Hidden Markov Model (HMM) of regime-switching between a normal market phase represented by a geometric Brownian motion and a bubble regime represented by the stochastic super-exponential Sornette and Andersen (Int J Mod Phys C 13(2):171–188, 2002) bubble model. The calibration of the HMM provides the probability at each time for a given security to be in the bubble regime. Conditional on two assets being qualified in the bubble regime, we then use the transfer entropy to quantify the influence of the returns of one asset i onto another asset j, from which we introduce the adjacency matrix of the SIN among securities. We apply our technology to the Chinese stock market during the period 2005–2008, during which a normal phase was followed by a spectacular bubble ending in a massive correction. We introduce the Net Speculative Influence Intensity variable as the difference between the transfer entropies from i to j and from j to i, which is used in a series of rank ordered regressions to predict the maximum loss (%MaxLoss) endured during the crash. The sectors that influenced other sectors the most are found to have the largest losses. There is some predictability obtained by using the transfer entropy involving industrial sectors to explain the %MaxLoss of financial institutions but not vice versa. We also show that the bubble state variable calibrated on the Chinese market data corresponds well to the regimes when the market exhibits a strong price acceleration followed by clear change of price regimes. Our results suggest that SIN may contribute significant skill to the development of general linkage-based systemic risks measures and early warning metrics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Acemoglu D, Ozdaglar A, Tahbaz-Salehi A (2015) Systemic risk and stability in financial networks. Am Econ Rev 105(2):564–608

    Article  Google Scholar 

  • Allen F, Babus A (2009) Ch in finance. In: The network challenge: strategy, profit, and risk in an interlinked world. Networks, Pearson Prentice Hall

  • Ancona N, Marinazzo D, Stramaglia S (2004) Radial basis function approach to nonlinear granger causality of time series. Phys Rev E 70(5):0562211:1–0562211:7

    Article  Google Scholar 

  • Andersen J, Sornette D (2004) Fearless versus fearful speculative financial bubbles. Phys A 337(3–4):565–585

    Article  Google Scholar 

  • Anufriev M, Panchenko V (2015) Connecting the dots: econometric methods for uncovering networks with an application to the australian financial institutions. J Bank Finance 61:S241–S255

    Article  Google Scholar 

  • Ardila-Alvarez D, Forró Z, Sornette D, (2015) The acceleration effect and gamma factor in asset pricing. Swiss Finance Institute Research Paper No. 15-30. Available at SSRN: http://ssrn.com/abstract=2645882

  • Avery C, Zemsky P (1998) Multidimensional uncertainty and herd behavior in financial markets. Am Econ Rev 88(4):724–748

    Google Scholar 

  • Banerjee AV (1992) A simple model of herd behavior. Q J Econ 107(3):797–817

    Article  Google Scholar 

  • Barberis N, Shleifer A, Vishny R (1998) A model of investor sentiment. J Financ Econ 49(3):307–343

    Article  Google Scholar 

  • Barnett L, Barrett AB, Seth AK (2009) Granger causality and transfer entropy are equivalent for Gaussian variables. Phys Rev Lett 103(23):238701

    Article  Google Scholar 

  • Barrett AB, Barnett L (2013) Granger causality is designed to measure effect, not mechanism. Front Neuroinform 7(6):1–2

    Google Scholar 

  • Bikhchandani S, Hirshleifer D, Welch I (1992) A theory of fads, fashion, custom, and cultural change as informational cascades. J Polit Econ 100(5):992–1026

    Article  Google Scholar 

  • Billio M, Getmansky M, Lo AW, Pelizzon L (2012) Econometric measures of connectedness and systemic risk in the finance and insurance sectors. J Financ Econ 104(3):535–559

    Article  Google Scholar 

  • Brunnermeier M K, Oehmke M (2013) Bubbles, financial crises, and systemic risk. Handbook of the Economics of Finance. Elsevier 2 (B), Amsterdam

    Google Scholar 

  • Cajueiro D, Tabak B, Werneck F (2009) Can we predict crashes? The case of the Brazilian stock market. Phys A 388(8):1603–1609

    Article  Google Scholar 

  • Chiang TC, Li J, Tan L (2010) Empirical investigation of herding behavior in chinese stock markets: evidence from quantile regression analysis. Glob Finance J 21(1):111–124

    Article  Google Scholar 

  • Chincarini L B (2012) The Crisis of Crowding: Quant Copycats, Ugly Models, and the New Crash Normal. Wiley, New York

    Book  Google Scholar 

  • Choi N, Sias RW (2009) Institutional industry herding. J Financ Econ 94(3):469–491

    Article  Google Scholar 

  • Dass N, Massa M, Patgiri R (2008) Mutual funds and bubbles: the surprising role of contractual incentives. Rev Financ Stud 21(1):51–99

    Article  Google Scholar 

  • Dempster AP, Laird NM, Rubin DB (1977) Maximum likelihood from incomplete data via the EM algorithm. J R Stat Soc Ser B (Methodol) 39(1):1–38

    Google Scholar 

  • Devenow A, Welch I (1996) Rational herding in financial economics. Eur Econ Rev 40(3):603–615

    Article  Google Scholar 

  • Diks C, Panchenko V (2006) A new statistic and practical guidelines for nonparametric granger causality testing. J Econ Dyn Control 30(9):1647–1669

    Article  Google Scholar 

  • Dimitriadi G (2004) What are ”financial bubbles”: approaches and definitions. Electronic Journal “INVESTIGATED in RUSSIA”

  • Filimonov V, Sornette D (2013) A stable and robust calibration scheme of the log-periodic power law model. Phys A Stat Mech Appl 392(17):3698–3707

    Article  Google Scholar 

  • Francis BB, Mougoué M, Panchenko V (2010) Is there a symmetric nonlinear causal relationship between large and small firms? J Empir Finance 17(1):23–38

    Article  Google Scholar 

  • Giordano M, Mannella R (2006) A brief analysis of May 2004 crash in the indian market. Fluct Noise Lett 6(3):243–249

    Article  Google Scholar 

  • Gisler M, Sornette D, Woodard R (2011) Innovation as a social bubble: the example of the human genome project. Res Policy 40:1412–1425

    Article  Google Scholar 

  • Gurkaynak RS (2008) Econometric tests of asset price bubbles: taking stock. J Econ Surv 22(1):166–186

    Article  Google Scholar 

  • Hamilton JD (1989) A new approach to the economic analysis of nonstationary time series and the business cycle. Econom J Econom Soc 57(2):357–384

    Google Scholar 

  • He Z, Su D (2009) Price manipulation and industry momentum: evidence from the chinese stock market. Available at SSRN: http://ssrn.com/abstract=1393505

  • Hlavácková-Schindler K (2011) Equivalence of granger causality and transfer entropy: a generalization. Appl Math Sci 5(73):3637–3648

    Google Scholar 

  • Hong H, Kubik JD, Stein JC (2005) Thy neighbor’s portfolio: word-of-mouth effects in the holdings and trades of money managers. J Finance 60(6):2801–2824

    Article  Google Scholar 

  • Hüsler A, Sornette D, Hommes CH (2013) Super-exponential bubbles in lab experiments: evidence for anchoring over-optimistic expectations on price. J Econ Behav Organ 92:304–316

    Article  Google Scholar 

  • Ide K, Sornette D (2002) Oscillatory finite-time singularities in finance, population and rupture. Phys A 307(1–2):63–106

    Article  Google Scholar 

  • Jeanblanc M, Yor M, Chesney M (2009) Mathematical methods for financial markets. Springer Finance Textbooks, Springer Finance, Berlin

    Book  Google Scholar 

  • Jiang Z-Q, Zhou W-X, Sornette D, Woodard R, Bastiaensen K, Cauwels P (2010) Bubble diagnosis and prediction of the 2005–2007 and 2008–2009 chinese stock market bubbles. J Econ Behav Organ 74(3):149–162

    Article  Google Scholar 

  • Johansen A, Ledoit O, Sornette D (2000) Crashes as critical points. Int J Theor Appl Finance 3:219–255

    Google Scholar 

  • Johansen A, Sornette D (2000) The nasdaq crash of April 2000: yet another example of log-perodicity in a speculative bubble ending in a crash. Eur Phys J B 17:319–328

    Article  Google Scholar 

  • Johansen A, Sornette D (2001) Bubbles and anti-bubbles in latin-american, asian and western stock markets: an empirical study. Int J Theor Appl Finance 4(6):853–920

    Article  Google Scholar 

  • Johansen A, Sornette D, Ledoit O (1999) Predicting financial crashes using discrete scale invariance. J Risk 1(4):5–32

    Article  Google Scholar 

  • Kaizoji T, Leiss M, Saichev A, Sornette D (2015) Super-exponential endogenous bubbles in an equilibrium model of rational and noise traders. J Econ Behav Organ 112:289–310

    Article  Google Scholar 

  • Khwaja AI, Mian A (2005) Unchecked intermediaries: price manipulation in an emerging stock market. J Financ Econ 78(1):203–241

    Article  Google Scholar 

  • Kim C-J, Nelson CR (1999) State-space models with regime switching. MIT Press, Cambridge

    Google Scholar 

  • Lakonishok J, Shleifer A, Vishny RW (1994) Contrarian investment, extrapolation, and risk. J Finance 49(5):1541–1578

    Article  Google Scholar 

  • Leiss M, Nax H, Sornette D (2015) Super-exponential growth expectations and the global financial crisis. J Econ Dyn Control 55:1–13

    Article  Google Scholar 

  • Li W, Rhee G, Wang SS (2009) Differences in herding: individual vs. institutional investors in china. Institutional Investors in China (SSRN: February 13, 2009)

  • Lin L, Ren R-E, Sornette D (2014) The volatility-confined LPPL model: a consistent model of ‘explosive’financial bubbles with mean-reverting residuals. Int Rev Financ Anal 33:210–225

    Article  Google Scholar 

  • Lin L, Sornette D (2013) Diagnostics of rational expectation financial bubbles with stochastic mean-reverting termination times. Eur J Finance 19(5):344–365

    Article  Google Scholar 

  • Long JBD, Shleifer A, Summers LH, Waldmann RJ (1990) Noise trader risk in financial markets. J Polit Econ 98(4):703–738

    Article  Google Scholar 

  • Lungarella M, Ishiguro K, Kuniyoshi Y, Otsu N (2007) Methods for quantifying the causal structure of bivariate time series. Int J Bifurc Chaos 17(03):903–921

    Article  Google Scholar 

  • Matsushita R, da Silva S, Figueiredo A, Gleria I (2006) Log-periodic crashes revisited. Phys A 364:331–335

    Article  Google Scholar 

  • Nofsinger JR, Sias RW (1999) Herding and feedback trading by institutional and individual investors. J Finance 54(6):2263–2295

    Article  Google Scholar 

  • Piotroski JD, Wong T (2011) Institutions and information environment of Chinese listed firms. In: Capitalizing China. University of Chicago Press, pp 201–242

  • Redner S (2001) A guide to first-passage processes. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Roehner BM, Sornette D (2000) ”Thermometers” of speculative frenzy. Eur Phys J B Condens Matter 16(4):729–739

    Google Scholar 

  • Schreiber T (2000) Measuring information transfer. Phys Rev Lett 85(2):461–464

    Article  Google Scholar 

  • Shiller RJ (2000) Irrational exuberance. Princeton University Press, Princeton

    Google Scholar 

  • Sias RW (2004) Institutional herding. Rev Financ Stud 17(1):165–206

    Article  Google Scholar 

  • Sornette D (1998) Discrete-scale invariance and complex dimensions. Phys Rep 297:239–270

    Article  Google Scholar 

  • Sornette D, Andersen JV (2002) A nonlinear super-exponential rational model of speculative financial bubbles. Int J Mod Phys C 13(2):171–188

    Article  Google Scholar 

  • Sornette D, Cauwels P (2014) 1980–2008: The illusion of the perpetual money machine and what it bodes for the future. Risks 2:103–131

    Article  Google Scholar 

  • Sornette D, Cauwels P (2015) Financial bubbles: mechanisms and diagnostics. Rev Behav Econ 2(3). http://ssrn.com/abstract=2423790

  • Sornette D, Demos G, Zhang Q, Cauwels P, Filimonov V, Zhang Q (2015) Real-time prediction and post-mortem analysis of the Shanghai 2015 stock market bubble and crash. J Invest Strateg 4(4):77–95

    Article  Google Scholar 

  • Sornette D, Johansen A (1998) A hierarchical model of financial crashes. Phys A Stat Mech Appl 261:581–598

    Article  Google Scholar 

  • Sornette D, Woodard R, (2010) Financial bubbles, real estate bubbles, derivative bubbles, and the financial and economic crisis. In: Takayasu M, Watanabe T, Takayasu H (eds) Proceedings of APFA7 (Applications of Physics in Financial Analysis), “New Approaches to the Analysis of Large-Scale Business and Economic Data”. Springer, Berlin. arXiv:0905.0220

  • Sornette D, Woodard R, Zhou WX (2009) The 2006–2008 oil bubble: evidence of speculation, and prediction. Phys A 388:1571–1576

    Article  Google Scholar 

  • Sornette D, Zhou W-X (2006) Predictability of large future changes in major financial indices. Int J Forecast 22:153–168

    Article  Google Scholar 

  • Tan L, Chiang TC, Mason JR, Nelling E (2008) Herding behavior in chinese stock markets: an examination of a and b shares. Pac Basin Finance J 16(1):61–77

    Article  Google Scholar 

  • Xu N-X, Yu S-R, Yin ZH (2013) Institutional investor herding and stock price crash risk. Manag World (Chinese) 7:31–43

    Google Scholar 

  • Zhou CS, Yang YH, Wang Y-P (2005) Trading-based market manipulation in china’s stock market. Econ Res J (in Chinese) 10:70–78

  • Zhou W X, Sornette D (2006) Fundamental factors versus herding in the 2000–2005 us stock market and prediction. Phys A Stat Mech Appl 360(2):459–482

    Article  Google Scholar 

  • Zhou WX, Sornette D (2006b) Is there a real-estate bubble in the us? Phys A Stat Mech Appl 361(1):297–308

    Article  Google Scholar 

  • Zhou W-X, Sornette D (2008) Analysis of the real estate market in las vegas: bubble, seasonal patterns, and prediction of the csw indexes. Phys A 387:243–260

    Article  Google Scholar 

  • Zhou W-X, Sornette D (2009) A case study of speculative financial bubbles in the South African stock market 2003–2006. Phys A 388:869–880

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge financial support from the National Natural Science Founds of China (Grant No. 71301051) and the Fundamental Research Funds for the Central Universities of China (Grant No.  WN1522007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Lin.

Appendices

Appendix 1: “Bra-Ket” notations for probability formulas

This appendix introduces a convenient mathematical representation of probability distribution functions and of conditional density functions using notations involving bra-vector and ket-vector, according to the following definition:

  1. 1a.

    A single “bra-vector” \(\langle \, A\,|\) indicates an element in “unconditional probability space” \({\mathscr {H}}\) as the image of mapping from a event A that belongs to the sample space \(\Omega \). Similarly, \(\langle \, A,B\,|\) denotes the “bra-vector” of event \(A\cap B\). Compactly, \(\langle \, A,B\,|\) also writes as \(\langle \, AB\,|\).

  2. 1b.

    A single “ket-vector” \(|B\,\rangle \) indicates an element in “condition space” \({\mathscr {M}}\) as the image of mapping from a event B that belongs to the sample space \(\Omega \). Similarly, \(|A,B\,\rangle \) denotes the “ket-vector” of event \(A\cap B\).

  3. 2.

    The spaces \({\mathscr {H}}\) and \({\mathscr {M}}\) are both linear space satisfying the axioms such as the associativity and commutativity of addition, compatibility of scalar multiplication, distributivity of scalar multiplication, etc. For example, \(k\cdot \langle \, A\,|+\langle \, B\,|\cdot k=k (\langle \, A\,|+\langle \, B\,|),\quad k \in \mathbb {R}\).

  4. 3.

    There is a binary operator “concatenation product”, denoted by “:”, between the vector in \({\mathscr {H}}\) and vector in \({\mathscr {M}}\). The output of \(\langle \, A\,|:|B\,\rangle \) makes a complete pairwise bra-ket \(\langle \,A\mid B \,\rangle \) as a number, which represents the conditional distribution \(f(A\mid B)\). Generally, there is no associativity for scalar multiplication “\(\cdot \)” and “:”, i.e., \((k\cdot \langle \, A\,|):|B\,\rangle \ne k\,\langle \,A\mid B \,\rangle \). Where, \(|\Omega \,\rangle \) is of exception so that \((k\cdot \langle \, A\,|):|\Omega \,\rangle = k\,\langle \,A\mid \Omega \,\rangle \).

  5. 4.

    For arbitrary unitary operator T which is defined on both \({\mathscr {H}}\) and \({\mathscr {M}}\), the notation \(\langle \, A\,|T|B\,\rangle \) simultaneously means \(\Bigl (\langle \, A\,| T\Bigr ):|B\,\rangle \) and \(\langle \, A\,|:\Bigl (T|B\,\rangle \Bigr )\).

  6. 5a.

    The notation \(|A\,\rangle \langle \, A\,|\) to concatenate a single “ket” vector and a single “bra” vector defines the operator to transform a “ket” (“bra”) into another “ket” (“bra”), which leads to

    • \(\langle \, B\,|\,\Bigl (\,|A\,\rangle \langle \, A\,|\,\Bigr )=\langle \,B\mid A \,\rangle \cdot \langle \, A\,|=\langle \, B,A\,|\)

    • \(\Bigl (\,|A\,\rangle \langle \, A\,|\,\Bigr )\,|B\,\rangle =|A,B\,\rangle \cdot \langle \,A\mid B \,\rangle \)

  7. 5b.

    Given \(\Omega =\bigcup \nolimits _{i}C_i,\quad C_i\cap C_j=\phi \), then \(I:=\sum \nolimits _i\,\,|C_i\,\rangle \langle \, C_i\,|\) gives the identical operator such that \(\langle \, A\,|\, I = \langle \, A\,|\),   \(I\, |B\,\rangle =|B\,\rangle \) and \(\langle \, A\,|\,I\,|B\,\rangle =\langle \,A\mid B \,\rangle \).

In the strict sense, the unconditional distribution for event A should be a number \(f(A)=\langle \,A\mid \Omega \,\rangle \). But as in all time one can first manipulate bra-vector in \({\mathscr {H}}\) and then try to concatenate the bra-vector result by \(|\Omega \,\rangle \) in \({\mathscr {M}}\) to give the meaning of probability, in most cases without ambiguity, it is convenient to straightforward treat the bra-vector as the presentation of unconditional distribution, i.e., \(f(A):=\langle \, A\,|\).

As for a random variable \(\tilde{x}: \Omega \mapsto \mathbb {R}\), the above notations can also apply. One can use \(\langle \, \tilde{x}=x\,|\) to represent a vectors in \({\mathscr {H}}\) that is same as \(\langle \, \{\omega \mid \tilde{x}(\omega )=x\}\in {\mathscr {F}}\subset \Omega \,|\). The meaning of \(|\tilde{x}=x\,\rangle \) is similar. Moreover, the notation \(\langle \, \tilde{x}\,|\) (respectively, \(|\tilde{x}\,\rangle \)) indicates a set of “bra” (“ket”), i.e., \(\langle \, \tilde{x}\,|=\bigl \{\langle \, \tilde{x}=x\,|: \forall x \in \mathbb {R}\bigr \}\) or a generic “bra-vector”(“ket-vector”) before \(\tilde{x}\) finds a certain value x.

Further, according to the previous defined notations, the classic conditional probability and Bayesian formula can be rewritten as

  • (Conditional probability formula): \(\langle \,A\mid B \,\rangle =\dfrac{\langle \,AB\mid \Omega \,\rangle }{\langle \,B\mid \Omega \,\rangle }\quad \) or \(\quad \langle \, AB\,|=\langle \,A\mid B \,\rangle \langle \, B\,|\)

  • (The Bayesian formula):    \(\langle \,A\mid B \,\rangle =\langle \,A\mid \Omega \,\rangle \dfrac{\langle \,B\mid A \,\rangle }{\langle \,B\mid \Omega \,\rangle }\quad \) or    \(\langle \,A\mid B \,\rangle \langle \, B\,|=\langle \,B\mid A \,\rangle \langle \, A\,|\)

With the listed formal rules and the basic formula, we can easily give the derivations for the following famous formula in probability theory.

  1. 1.

    (The Law of Total probability): \(\langle \, A\,|=\langle \, A\,|\,I=\langle \, A\,|\Bigl (\sum _i|B_i\,\rangle \langle \, B_i\,|\Bigr )=\sum _i\langle \,A\mid B_i \,\rangle \langle \, B_i\,|\)

  2. 2.

    (Decomposed Conditional Joint Density):

    $$\begin{aligned} \langle \,A,B\mid C \,\rangle&=\langle \, AB\,|:|C\,\rangle =(\langle \,A\mid B \,\rangle \langle \, B\,|):|C\,\rangle \\&=\langle \, A\,|\,\Bigl (|B\,\rangle \langle \, B\,|\,\Bigr )\,|C\,\rangle =\langle \, A\,|:\Bigl (|B,C\,\rangle \langle \,B\mid C \,\rangle \Bigr )\\&=\langle \,A\mid B,C \,\rangle \langle \,B\mid C \,\rangle \end{aligned}$$
  3. 3.

    (Multivariate Bayesian Formula):

    $$\begin{aligned} \langle \,A\mid B,C \,\rangle&=\frac{\langle \,A\mid B,C \,\rangle \langle \,B\mid C \,\rangle }{\langle \,B\mid C \,\rangle }=\frac{\langle \, A\,|\,(\,|B\,\rangle \langle \, B\,|\,)\,|C\,\rangle }{\langle \,B\mid C \,\rangle }\\&=\frac{\langle \, AB\,|:|C\,\rangle }{\langle \,B\mid C \,\rangle }=\frac{\langle \, BA\,|:|C\,\rangle }{\langle \,B\mid C \,\rangle }=\frac{\langle \, B\,|\,(\,|A\,\rangle \langle \, A\,|\,)\,|C\,\rangle }{\langle \,B\mid C \,\rangle }\\&=\langle \,A\mid C \,\rangle \frac{\langle \,B\mid A,C \,\rangle }{\langle \,B\mid C \,\rangle } \end{aligned}$$

Appendix 2: Proof of Eq. (10)

Proof

Since \(p_t^{-n}\mid p_{t-1}^{-n}\,\sim \,\mathcal {N}(p_{t-1}^{-n}-n\mu _1,n^2\sigma _1^2)\), one can get

$$\begin{aligned} \langle \,p_t^{-n}\mid p_{t-1}^{-n} \,\rangle =\dfrac{1}{\sqrt{2\pi }\sigma _1}\exp \left[ -\dfrac{1}{2}\cdot \left( \dfrac{p_t^{-n}-p_{t-1}^{-n}-\mu _1}{\sigma _1}\right) ^2\right] . \end{aligned}$$
(38)

With the density transformation formula \(f_{\tilde{x}|\tilde{y}}(x|y)=f_{\tilde{x}|\tilde{y}}(\phi (x)|y)|\phi '(x)|\), or equivalently \(\langle \,x\mid y \,\rangle =\langle \,\phi (x)\mid y \,\rangle \cdot |\phi '(x)|\), Eq. (38) further leads to

$$\begin{aligned} \langle \,p_t\mid p_{t-1} \,\rangle =\dfrac{1}{\sqrt{2\pi }\cdot n\sigma _1}\exp \left[ -\dfrac{1}{2}\cdot \left( \dfrac{p_t^{-n}-p_{t-1}^{-n}+n\mu _1}{n\sigma _1}\right) ^2\right] \cdot n p_t^{-(n+1)} \end{aligned}$$
(39)

From the definition \(y_t=\ln p_t\), and using the density transformation formula again, we obtain

$$\begin{aligned} \langle \,y_t\mid y_{t-1} \,\rangle= & {} \langle \,e^{y_t}\mid y_{t-1} \,\rangle e^{y_t}=\langle \,p_t\mid y_t \,\rangle p_t\end{aligned}$$
(40)
$$\begin{aligned}= & {} \dfrac{1}{\sqrt{2\pi }\cdot n\sigma _1}\exp \left[ -\dfrac{1}{2}\cdot \left( \dfrac{e^{-ny_t}-e^{-ny_{t-1}}+n\mu _1}{n\sigma _1}\right) ^2\right] \cdot n e^{-ny_t}\nonumber \\ \end{aligned}$$
(41)

Consequently, we have

$$\begin{aligned} \ln \langle \,y_t\mid 1,1,y_{t-1} \,\rangle =-\dfrac{1}{2}\ln 2\pi -\ln n\sigma _1-\dfrac{1}{2}\cdot \left( \dfrac{e^{-ny_t}-e^{-ny_{t-1}}+n\mu _1}{n\sigma _1}\right) ^2+\ln n -n y_t \end{aligned}$$
(42)

\(\square \)

Appendix 3: Derivations for the equations in EM algorithm

1.1 Proof of the Eq. (14) from Eq. (13)

Proof

$$\begin{aligned} \mathcal {\ln L}_{\pmb {\theta }\,\mid \,\pmb {\theta }^{(k-1)}}&=\sum _{1\ldots T}\ln \langle \, y^{T}_{\multimap },s^{T}_{\multimap }\,|_{\pmb {\theta }}\,\,\langle \, y^{T}_{\multimap },s^{T}_{\multimap }\,|_{\pmb {\theta }^{(k-1)}}\nonumber \\&=\sum _{1\ldots T}\ln (\,\langle \,y^{T}_{\multimap }\mid s^{T}_{\multimap } \,\rangle _{\pmb {\theta }}\langle \, s^{T}_{\multimap }\,|_{\pmb {\theta }}\,)\,\,\langle \, y^{T}_{\multimap },s^{T}_{\multimap }\,|_{\pmb {\theta }^{(k-1)}}\nonumber \\&=\sum _{1\ldots T}\ln \langle \,y^{T}_{\multimap }\mid s^{T}_{\multimap } \,\rangle _{\pmb {\theta }}\,\,\langle \, y^{T}_{\multimap },s^{T}_{\multimap }\,|_{\pmb {\theta }^{(k-1)}}+\sum _{1\ldots T}\ln \langle \, s^{T}_{\multimap }\,|_{\pmb {\theta }}\,\,\langle \, y^{T}_{\multimap },s^{T}_{\multimap }\,|_{\pmb {\theta }^{(k-1)}} \end{aligned}$$
(43)

For the first item in the r.h.s. of (43), we can further obtain

$$\begin{aligned}&\sum _{1\ldots T}\ln \langle \,y^{T}_{\multimap }\mid s^{T}_{\multimap } \,\rangle _{\pmb {\theta }}\,\,\langle \, y^{T}_{\multimap },s^{T}_{\multimap }\,|_{\pmb {\theta }^{(k-1)}}\\&=\sum _{1\ldots T}\left( \sum _{t=1}^T\ln \langle \,y_{t}\mid s_t,s_{t-1},y^{t-1}_{\multimap } \,\rangle _{\pmb {\theta }}\right) \,\,\langle \, y^{T}_{\multimap },s^{T}_{\multimap }\,|_{\pmb {\theta }^{(k-1)}}\\&=\sum _{t=1}^T\left( \sum _{t,t-1}\sum _{/t,/t-1}\ln \langle \,y_{t}\mid s_t,s_{t-1},y^{t-1}_{\multimap } \,\rangle _{\pmb {\theta }}\,\,\langle \, y^{T}_{\multimap },s^{T}_{\multimap }\,|_{\pmb {\theta }^{(k-1)}}\right) \\&=\sum _{t=1}^T\sum _{t,t-1}\left( \ln \langle \,y_{t}\mid s_t,s_{t-1},y^{t-1}_{\multimap } \,\rangle _{\pmb {\theta }}\,\sum _{/t,/t-1}\langle \, y^{T}_{\multimap },s^{T}_{\multimap }\,|_{\pmb {\theta }^{(k-1)}}\right) \\&=\sum _{t=1}^T\left( \sum _{t,t-1}\ln \langle \,y_{t}\mid s_t,s_{t-1},y^{t-1}_{\multimap } \,\rangle _{\pmb {\theta }}\,\langle \, y^{T}_{\multimap },s_{t},s_{t-1}\,|_{\pmb {\theta }^{(k-1)}}\right) \\&=\langle \, y^{T}_{\multimap }\,|_{\pmb {\theta }^{(k-1)}} \sum _{t=1}^T\left( \sum _{t,t-1}\ln \langle \,y_{t}\mid s_t,s_{t-1},y^{t-1}_{\multimap } \,\rangle _{\pmb {\theta }}\,\langle \,s_{t-1},s_t\mid y^{T}_{\multimap } \,\rangle _{\pmb {\theta }^{(k-1)}}\right) \end{aligned}$$

where the notation \(\sum \nolimits _{/t,/t-1}\) represents the summation for all states \(s_{\tau }, \tau =1,\ldots ,T\), except for \(s_{t-1}\) and \(s_t\). The second term in the r.h.s. of (43) leads to

$$\begin{aligned}&\sum _{1\ldots T}\ln \langle \, s^{T}_{\multimap }\,|_{\pmb {\theta }}\,\,\langle \, y^{T}_{\multimap },s^{T}_{\multimap }\,|_{\pmb {\theta }^{(k-1)}}\\&=\sum _{1\ldots T}\left( \sum _{t=1}^T\ln \langle \,s_t\mid s_{t-1} \,\rangle _{\pmb {\theta }}\right) \,\,\langle \, y^{T}_{\multimap },s^{T}_{\multimap }\,|_{\pmb {\theta }^{(k-1)}}\\&=\sum _{t=1}^T\left( \sum _{t,t-1}\sum _{/t,/t-1}\ln \langle \,s_t\mid s_{t-1} \,\rangle _{\pmb {\theta }}\,\,\langle \, y^{T}_{\multimap },s^{T}_{\multimap }\,|_{\pmb {\theta }^{(k-1)}}\right) \\&=\sum _{t=1}^T\sum _{t,t-1}\left( \ln \langle \,s_t\mid s_{t-1} \,\rangle _{\pmb {\theta }}\sum _{/t,/t-1}\langle \, y^{T}_{\multimap },s^{T}_{\multimap }\,|_{\pmb {\theta }^{(k-1)}}\right) \\&=\langle \, y^{T}_{\multimap }\,|_{\pmb {\theta }^{(k-1)}}\sum _{t=1}^T\left( \sum _{t,t-1}\ln \langle \,s_t\mid s_{t-1} \,\rangle _{\pmb {\theta }}\,\langle \,s_{t-1},s_t\mid y^{T}_{\multimap } \,\rangle _{\pmb {\theta }^{(k-1)}}\right) \end{aligned}$$

Thus, we finally obtain (14)

$$\begin{aligned}&\mathcal {\ln L}_{\pmb {\pmb {\theta }}^{(k)}\,\mid \,\pmb {\theta }^{(k-1)}}= \langle \, y^{T}_{\multimap }\,|_{\pmb {\theta }^{(k-1)}}\\&\cdot \left( \sum _{t=1}^T \sum _{\begin{array}{c} \;\;s_t=1,0\\ s_{t-1}=1,0 \end{array}}\Bigl (\ln \langle \,y_{t}\mid s_t,s_{t-1},y_{t-1} \,\rangle _{\pmb {\theta }^{(k)}}+\ln \langle \,s_t\mid s_{t-1} \,\rangle _{\pmb {\theta }^{(k)}}\,\Bigr )\langle \,s_{t-1},s_t\mid y^{T}_{\multimap } \,\rangle _{\pmb {\theta }^{(k-1)}}\right) \end{aligned}$$

\(\square \)

1.2 Derivation of the formulas to determine the first four parameters of the HMM

Since \(\langle \, s^{T}_{\multimap }\,|_{\pmb {\theta }}\) does not depend on \(\pmb {\theta }=(\mu _0,\sigma _0, \mu _1, \sigma _1, n)\), one can ignore the second term in Eq. (43) when calibrating the parameters of the HMM.

In order to compute \(\mu _0^{(k)}\), the first-order condition of the first term in Eq. (43) reads

$$\begin{aligned} \sum _{t=1}^T \left( \sum _{\begin{array}{c} s_t=1,0\\ s_{t-1}=1,0 \end{array}}\dfrac{\partial }{\partial \mu _0}\ln \langle \,y_{t}\mid s_t,s_{t-1},y_{t-1} \,\rangle _{\pmb {\theta }}\,\langle \,s_t,s_{t-1}\mid y^{T}_{\multimap } \,\rangle _{\pmb {\theta }^{(k-1)}}\right) =0 \end{aligned}$$
(44)

which leads to

$$\begin{aligned}&\sum _{t=1}^T \left( \dfrac{y_t-y_{t-1}-\mu _0}{\sigma _0}\,\langle \,s_t=0,s_{t-1}=0\mid y^{T}_{\multimap } \,\rangle _{\pmb {\theta }^{(k-1)}}\right) =0\\&\Longrightarrow \qquad \mu _0=\dfrac{\sum _{t=1}^T (y_t-y_{t-1})\langle \,s_t=0,s_{t-1}=0\mid y^{T}_{\multimap } \,\rangle _{\pmb {\theta }^{(k-1)}}}{\sum _{t=1}^T \langle \,s_t=0,s_{t-1}=0\mid y^{T}_{\multimap } \,\rangle _{\pmb {\theta }^{(k-1)}}}\\&\Longrightarrow \qquad \mu _0^{(k)}=\dfrac{\sum _{t=1}^T \omega _{(0,0);t}^{(k-1)}(y_t-y_{t-1})}{\sum _{t=1}^T\omega _{(0,0);t}^{(k-1)}} \end{aligned}$$

In order to compute \(\sigma _0^{(k)}\), the first-order condition of the first term in Eq. (43) reads

$$\begin{aligned} \sum _{t=1}^T \left( \sum _{\begin{array}{c} s_t=1,0\\ s_{t-1}=1,0 \end{array}}\dfrac{\partial }{\partial \sigma _0}\ln \langle \,y_{t}\mid s_t,s_{t-1},y_{t-1} \,\rangle _{\pmb {\theta }}\,\langle \,s_t,s_{t-1}\mid y^{T}_{\multimap } \,\rangle _{\pmb {\theta }^{(k-1)}}\right) =0 \end{aligned}$$
(45)

which leads to

$$\begin{aligned} \sum _{t=1}^T \left( -\dfrac{1}{\sigma _0}+\dfrac{(y_t-y_{t-1}-\mu _0)^2}{\sigma _0^3}\,\right) \langle \,s_t=0,s_{t-1}=0\mid y^{T}_{\multimap } \,\rangle _{\pmb {\theta }^{(k-1)}}=0\\ \Longrightarrow \qquad \sigma _0^{(k)}=\sqrt{\dfrac{\sum _{t=1}^T \omega _{(0,0);t}^{(k-1)}(y_t-y_{t-1}-\mu _0^{(k)})^2}{\sum _{t=1}^T\omega _{(0,0);t}^{(k-1)}}}&\end{aligned}$$

In order to compute \(\mu _1^{(k)}\), the first-order condition of the first term in Eq. (43) reads

$$\begin{aligned} \sum _{t=1}^T \left( \sum _{\begin{array}{c} s_t=1,0\\ s_{t-1}=1,0 \end{array}}\dfrac{\partial }{\partial \mu _1}\ln \langle \,y_{t}\mid s_t,s_{t-1},y_{t-1} \,\rangle _{\pmb {\theta }}\,\langle \,s_t,s_{t-1}\mid y^{T}_{\multimap } \,\rangle _{\pmb {\theta }^{(k-1)}}\right) =0 \end{aligned}$$
(46)

which leads to

$$\begin{aligned}&\sum _{t=1}^T \left( -\dfrac{p_t^{-n}-p_{t-1}^{-n}+n \mu _1}{n\sigma _1^2}\,\right) \langle \,s_t=1,s_{t-1}=1\mid y^{T}_{\multimap } \,\rangle _{\pmb {\theta }^{(k-1)}}=0\\&\Longrightarrow \qquad \sum _{t=1}^T \left( -p_t^{-n}+p_{t-1}^{-n}-n \mu _1\,\right) \omega _{(1,1);t}^{(k-1)}=0\\&\Longrightarrow \qquad \mu _1^{(k)}=\dfrac{\sum _{t=1}^T \omega _{(1,1);t}^{(k-1)}(p_{t-1}^{-n}-p_t^{-n})}{n \sum _{t=1}^T\omega _{(1,1);t}^{(k-1)}} \end{aligned}$$

In order to compute \(\sigma _1^{(k)}\), the first-order condition of the first term in Eq. (43) reads

$$\begin{aligned} \sum _{t=1}^T \left( \sum _{\begin{array}{c} s_t=1,0\\ s_{t-1}=1,0 \end{array}}\dfrac{\partial }{\partial \sigma _1}\ln \langle \,y_{t}\mid s_t,s_{t-1},y_{t-1} \,\rangle _{\pmb {\theta }}\,\langle \,s_t,s_{t-1}\mid y^{T}_{\multimap } \,\rangle _{\pmb {\theta }^{(k-1)}}\right) =0 \end{aligned}$$
(47)

which leads to

$$\begin{aligned}&\sum _{t=1}^T \left( \dfrac{1}{\sigma _1}-\dfrac{(p_t^{-n}-p_{t-1}^{-n}+n \mu _1)^2}{n^2\sigma _1^3}\,\right) \langle \,s_t=1,s_{t-1}=1\mid y^{T}_{\multimap } \,\rangle _{\pmb {\theta }^{(k-1)}}=0\\&\Longrightarrow \qquad \sum _{t=1}^T \left[ (p_t^{-n}-p_{t-1}^{-n}+n \mu _1)^2-n^2\sigma _1^2\,\right] \omega _{(1,1);t}^{(k-1)}=0\\&\Longrightarrow \qquad \sigma _1^{(k)}=\sqrt{\dfrac{\sum _{t=1}^T \omega _{(1,1);t}^{(k-1)}(p_{t}^{-n}-p_{t-1}^{-n}+n\mu _1^{(k)})^2}{n^2 \sum _{t=1}^T\omega _{(1,1);t}^{(k-1)}}} \end{aligned}$$

1.3 Derivation for Eq. (15) to solve for n

To compute \(n^{(k)}\), one should solve the first-order condition of the first term in Eq. (43) with respect to n, that is

$$\begin{aligned} \sum _{t=1}^T \left( \sum _{\begin{array}{c} s_t=1,0\\ s_{t-1}=1,0 \end{array}}\dfrac{\partial }{\partial n}\ln \langle \,y_{t}\mid s_t,s_{t-1},y_{t-1} \,\rangle _{\pmb {\theta }}\,\langle \,s_t,s_{t-1}\mid y^{T}_{\multimap } \,\rangle _{\pmb {\theta }^{(k-1)}}\right) =0 \end{aligned}$$
(48)

which gives,

$$\begin{aligned}&\sum _{t=1}^T \Biggl ( -\dfrac{(p_t^{-n}-p_{t-1}^{-n}+n\mu _1)(-p_t^{-n}\ln p_t+p_{t-1}^{-n}\ln p_{t-1}+\mu _1)}{n^2\sigma _1^2}\nonumber \\&\quad +\dfrac{(p_t^{-n}-p_{t-1}^{-n}+n\mu _1)^2}{n^3\sigma _1^2}-\frac{1}{n}+\frac{1}{n}-\ln p_t\Biggr )\,\,\omega _{(1,1):t}^{(k-1)}=0 \end{aligned}$$
(49)

Note that \(\displaystyle \sum \nolimits _{t=1}^T \left( \dfrac{(p_t^{-n}-p_{t-1}^{-n}+n\mu _1)^2}{n^3\sigma _1^2}-\frac{1}{n}\right) \,\omega _{(1,1):t}^{(k-1)}=0\). Thus, the above equation can be reduced to

$$\begin{aligned}&\sum _{t=1}^T \left( -\dfrac{(p_t^{-n}-p_{t-1}^{-n}+n\mu _1)(-p_t^{-n}\ln p_t+p_{t-1}^{-n}\ln p_{t-1}+\mu _1)}{n^2\sigma _1^2}+\frac{1}{n}-\ln p_t\right) \nonumber \\&\quad \,\times \omega _{(1,1):t}^{(k-1)}=0 \end{aligned}$$
(50)

1.4 Derivation of the formulas to compute the optimal posterior transition probability from \(s_{t-1}\) to \(s_t\)

Since \(\langle \,s_t\mid s_{t-1} \,\rangle _{\pmb {\theta }^{(k)}}\) is only related to the second term in Eq. (43), we can ignore the first term when performing the optimization:

$$\begin{aligned} \sum _{1\ldots T}\ln \langle \, s^{T}_{\multimap }\,|_{\pmb {\theta }}\,\,\langle \, y^{T}_{\multimap },s^{T}_{\multimap }\,|_{\pmb {\theta }^{(k-1)}}&= \sum _{t=1}^T\left( \sum _{t,t-1}\ln \langle \,s_t\mid s_{t-1} \,\rangle _{\pmb {\theta }}\,\langle \,s_{t},s_{t-1}\mid y^{T}_{\multimap } \,\rangle _{\pmb {\theta }^{(k-1)}}\right) \\&=\sum _{t=1}^T\left( \sum _{j,i}\ln q_{ij}^{(k)}\,\langle \,j,i\mid y^{T}_{\multimap } \,\rangle _{\pmb {\theta }^{(k-1)}}\right) \end{aligned}$$

Without loss of generality, the first-order condition against \(q_{i1}\) leads to

$$\begin{aligned} 0&=\sum _{t=1}^T\left( \dfrac{\partial }{\partial q_{i1}^{(k)} }\ln q_{ij}^{(k)}\,\langle \,i,j\mid y^{T}_{\multimap } \,\rangle _{\pmb {\theta }^{(k-1)}}\right) \\&=\sum _{t=1}^T\left( \dfrac{1}{q_{i1}^{(k)}}\langle \,1,i\mid y^{T}_{\multimap } \,\rangle _{\pmb {\theta }^{(k-1)}}-\dfrac{1}{1-q_{i1}^{(k)}}\langle \,0,i\mid y^{T}_{\multimap } \,\rangle _{\pmb {\theta }^{(k-1)}}\right) \end{aligned}$$

Then we have

$$\begin{aligned}&q_{i1}^{(k)}=\dfrac{\sum _{t=1}^T\langle \,1,i\mid y^{T}_{\multimap } \,\rangle _{\pmb {\theta }^{(k-1)}}}{\sum _{t=1}^T(\langle \,1,i\mid y^{T}_{\multimap } \,\rangle _{\pmb {\theta }^{(k-1)}}+\langle \,0,i\mid y^{T}_{\multimap } \,\rangle _{\pmb {\theta }^{(k-1)}})}=\dfrac{\sum _{t=1}^T\langle \,1,i\mid y^{T}_{\multimap } \,\rangle _{\pmb {\theta }^{(k-1)}}}{\sum _{t=1}^T\langle \,i\mid y^{T}_{\multimap } \,\rangle _{\pmb {\theta }^{(k-1)}}} \end{aligned}$$

It is the optimal posterior transition probability after the kth iteration, \(q_{ij}^{(k)}\), when \(j=1\).

1.5 Reasoning to replace \(\langle \,s_t\mid s_{t+1},y^{t}_{\multimap },y^{\multimap }_{t+1} \,\rangle \) by \(\langle \,s_t\mid s_{t+1},y^{t}_{\multimap } \,\rangle \) in Eq. (20)

$$\begin{aligned} \langle \,s_t\mid s_{t+1},y^{t}_{\multimap },y^{\multimap }_{t+1} \,\rangle= & {} \frac{\langle \, s_t\,|:\biggl (\,|s_{t+1},y^{t}_{\multimap },y^{\multimap }_{t+1}\,\rangle \,\biggr )\,\langle \,y^{\multimap }_{t+1}\mid s_{t+1},y^{t}_{\multimap } \,\rangle }{\langle \,y^{\multimap }_{t+1}\mid s_{t+1},y^{t}_{\multimap } \,\rangle } \end{aligned}$$
(51)
$$\begin{aligned}= & {} \frac{\langle \, s_t\,|:\biggl (\,|s_{t+1},y^{t}_{\multimap },y^{\multimap }_{t+1}\,\rangle \,\langle \,y^{\multimap }_{t+1}\mid s_{t+1},y^{t}_{\multimap } \,\rangle \,\biggr )}{\langle \,y^{\multimap }_{t+1}\mid s_{t+1},y^{t}_{\multimap } \,\rangle } \end{aligned}$$
(52)
$$\begin{aligned}= & {} \frac{\langle \, s_t\,|\,\biggl (\,|y^{\multimap }_{t+1}\,\rangle \langle \, y^{\multimap }_{t+1}\,|\,\biggr )\,|s_{t+1},y^{t}_{\multimap }\,\rangle }{\langle \,y^{\multimap }_{t+1}\mid s_{t+1},y^{t}_{\multimap } \,\rangle } \end{aligned}$$
(53)
$$\begin{aligned}= & {} \frac{\biggl (\,\langle \,s_t\mid y^{\multimap }_{t+1} \,\rangle \langle \, y^{\multimap }_{t+1}\,|\,\biggr ):|s_{t+1},y^{t}_{\multimap }\,\rangle }{\langle \,y^{\multimap }_{t+1}\mid s_{t+1},y^{t}_{\multimap } \,\rangle }\nonumber \\= & {} \frac{\langle \, y^{\multimap }_{t+1}\,|\,\biggl (\,|s_t\,\rangle \langle \, s_t\,|\,\biggr )\,|s_{t+1},y^{t}_{\multimap }\,\rangle }{\langle \,y^{\multimap }_{t+1}\mid s_{t+1},y^{t}_{\multimap } \,\rangle } \end{aligned}$$
(54)
$$\begin{aligned}= & {} \frac{\langle \,y^{\multimap }_{t+1}\mid s_t,s_{t+1},y^{t}_{\multimap } \,\rangle \langle \,s_t\mid s_{t+1},y^{t}_{\multimap } \,\rangle }{\langle \,y^{\multimap }_{t+1}\mid s_{t+1},y^{t}_{\multimap } \,\rangle }\qquad \end{aligned}$$
(55)

By assuming that the joint distribution of \(( y_{t+1},y_{t+2},\ldots ,y_{T} )\) is irrelevent to \(s_t\), we can eliminate the denominator and easily recover (55) for \(\langle \,s_t\mid s_{t+1},y^{t}_{\multimap } \,\rangle \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, L., Sornette, D. “Speculative Influence Network” during financial bubbles: application to Chinese stock markets. J Econ Interact Coord 13, 385–431 (2018). https://doi.org/10.1007/s11403-016-0187-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11403-016-0187-7

Keywords

JEL Classification

Navigation