Advertisement

Psychometrika

, Volume 83, Issue 3, pp 563–585 | Cite as

On Fair Person Classification Based on Efficient Factor Score Estimates in the Multidimensional Factor Analysis Model

  • Pascal Jordan
  • Martin Spiess
Article
  • 159 Downloads

Abstract

Since Hooker, Finkelman and Schwartzman (Psychometrika 74(3): 419–442, 2009) it is known that person parameter estimates from multidimensional latent variable models can induce unfair classifications via paradoxical scoring effects. The open question as to whether there is a fair and at the same time multidimensional scoring scheme with adequate statistical properties is addressed in this paper. We develop a theorem on the existence of a fair, multidimensional classification scheme in the context of the classical linear factor analysis model and show how the computation of the scoring scheme can be embedded in the context of linear programming. The procedure is illustrated in the framework of scoring the Wechsler Adult Intelligence Scale (WAIS-IV).

Keywords

factor scores paradoxical results fairness convex programs bifactor model 

Supplementary material

11336_2018_9613_MOESM1_ESM.r (3 kb)
Supplementary material 1 (R 2 KB)

References

  1. Bartholomew, D. J. (1996). Comment on: Metaphor taken as math: Indeterminacy in the factor analysis model. Multivariate Behavioral Research, 31(4), 551–554.CrossRefPubMedGoogle Scholar
  2. Canivez, G. L., & Watkins, M. W. (2010). Investigation of the factor structure of the Wechsler Adult Intelligence Scale Fourth Edition (WAIS-IV): Exploratory and higher order factor analyses. Psychological Assessment, 22(4), 827–836.CrossRefPubMedGoogle Scholar
  3. Ellis, J. L., & Junker, B. W. (1997). Tail-measurability in monotone latent variable models. Psychometrika, 62(4), 495–523.CrossRefGoogle Scholar
  4. Finkelman, M. D., Hooker, G., & Wang, Z. (2010). Prevalence and magnitude of paradoxical results in multidimensional item response theory. Journal of Educational and Behavioral Statistics, 35(6), 744–761.CrossRefGoogle Scholar
  5. Gignac, G. E., & Watkins, M. W. (2013). Bifactor modeling and the estimation of model-based reliability in the WAIS-IV. Multivariate Behavioral Research, 48(5), 639–662.CrossRefPubMedGoogle Scholar
  6. Guttman, L. (1955). The determinacy of factor score matrices with implications for five other basic problems of common? Factor theory. British Journal of Mathematical and Statistical Psychology, 8(2), 65–81.CrossRefGoogle Scholar
  7. Hampel, P., & Petermann, F. (2006). Fragebogen zum Screening psychischer Störungen im Jugendalter (SPS-J). Zeitschrift für Klinische Psychologie und Psychotherapie, 35(3), 204–214.CrossRefGoogle Scholar
  8. Holland, P. W. (1994). Measurements or contests? Comments on Zwick, Bond and Allen/Donoghue. In Proceedings of the social statistics section of the American Statistical Association (pp. 27–29). Alexandria, VA: American Statistical Association.Google Scholar
  9. Hooker, G., Finkelman, M., & Schwartzman, A. (2009). Paradoxical results in multidimensional item response theory. Psychometrika, 74(3), 419–442.CrossRefGoogle Scholar
  10. Hooker, G. (2010). On separable tests, correlated priors, and paradoxical results in multidimensional item response theory. Psychometrika, 75(4), 694–707.CrossRefGoogle Scholar
  11. Hooker, G., & Finkelman, M. (2010). Paradoxical results and item bundles. Psychometrika, 75(2), 249–271.CrossRefGoogle Scholar
  12. Jordan, P., & Spiess, M. (2017). Psychometrika.  https://doi.org/10.1007/s11336-017-9588-3.
  13. Jordan, P., & Spiess, M. (2012). Generalizations of paradoxical results in multidimensional item response theory. Psychometrika, 77, 127–152.CrossRefGoogle Scholar
  14. Krijnen, W. P., Dijkstra, T. K., & Gill, R. D. (1998). Conditions for factor (in) determinacy in factor analysis. Psychometrika, 63(4), 359–367.CrossRefGoogle Scholar
  15. Lax, P. D. (2007). Linear algebra and its applications (2nd ed.). Hoboken, NJ: Wiley.Google Scholar
  16. Lee, S. Y. (2007). Structural equation modeling: A Bayesian approach (1st ed.). Hoboken: Wiley.CrossRefGoogle Scholar
  17. Maraun, M. D. (1996). Metaphor taken as math: Indeterminacy in the factor analysis model. Multivariate Behavioral Research, 31(4), 517–538.CrossRefPubMedGoogle Scholar
  18. Mardia, K. V., Kent, J. T., & Bibby, J. M. (1979). Multivariate analysis. London: Academic Press.Google Scholar
  19. McDonald, R. P. (1996). Latent traits and the possibility of motion. Multivariate Behavioral Research, 31(4), 593–601.CrossRefPubMedGoogle Scholar
  20. Mulaik, S. A. (1996). On Maraun’s deconstructing of factor indeterminancy with constructed factors. Multivariate Behavioral Research, 31(4), 579–592.CrossRefPubMedGoogle Scholar
  21. Mulaik, S. A. (1994). Kant, Wittgenstein, objectivity, and structural equations modeling. In C. R. Reynolds (Ed.), Advances in cognitive assessment: An interdisciplinary approach (pp. 209–236). New York: Plenum.CrossRefGoogle Scholar
  22. Nesterov, Y., & Nemirovskii, A. (1994). Interior-point polynomial algorithms in convex programming. Philadelphia: SIAM.CrossRefGoogle Scholar
  23. R Core Team. (2016). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/. Accessed 25 Sept 2017.
  24. Reckase, M. (2009). Multidimensional item response theory. New York: Springer.CrossRefGoogle Scholar
  25. Reckase, M. D., & Luo, X. (2015). A paradox by another name is good estimation. In R. E. Milsap, D. M. Bolt, A. van der Ark, & W. C. Wang (Eds.), Quantitative psychology research: The 78th annual meeting of the psychometric society (pp. 465–486). New York: Springer.Google Scholar
  26. Rockafellar, R. T. (1970). Convex analysis. Princeton, NJ: Princeton University Press.CrossRefGoogle Scholar
  27. Rockafellar, R. T., & Wets, R. J. B. (2009). Variational analysis (317th ed.). Berlin: Springer.Google Scholar
  28. Searle, S. R., Casella, G., & McCulloch, C. E. (2006). Variance components. New York: Wiley.Google Scholar
  29. Segall, D. O. (2000). Principles of multidimensional adaptive testing. In W. J. van der Linden & C. A. W. Glas (Eds.), Computerized adaptive testing: Theory and practice (pp. 27–52). Dordrecht: Kluwer Academic.Google Scholar
  30. Soetaert, K., Van den Meersche, K., & van Oevelen, D. (2009). limSolve: Solving linear inverse models. R-package version 1.5.1.Google Scholar
  31. Steiger, J. H. (1979). Factor indeterminacy in the 1930’s and the 1970’s some interesting parallels. Psychometrika, 44(2), 157–167.CrossRefGoogle Scholar
  32. van der Linden, W. J. (2012). On compensation in multidimensional response modeling. Psychometrika, 77(1), 21–30.CrossRefGoogle Scholar
  33. van Rijn, P. W., & Rijmen, F. (2012). A note on explaining away and paradoxical results in multidimensional item response theory (ETS No. RR-12-13). Princeton, NJ: Educational Testing Service.Google Scholar
  34. van Rijn, P., & Rijmen, F. (2015). On the explaining-away phenomenon in multivariate latent variable models. British Journal of Mathematical and Statistical Psychology, 68(1), 1–22.CrossRefPubMedGoogle Scholar
  35. Ward, L. C., Bergman, M. A., & Hebert, K. R. (2012). WAIS-IV subtest covariance structure: Conceptual and statistical considerations. Psychological Assessment, 24(2), 328–340.CrossRefPubMedGoogle Scholar
  36. Wechsler, D. (2008). Wechsler Adult Intelligence Scale: Technical and interpretive manual (4th ed.). San Antonio, TX: Pearson.Google Scholar
  37. Wilson, E. B. (1928). Review of professor Spearman’s “the abilities of man”. Science, 67, 244–248.CrossRefGoogle Scholar

Copyright information

© The Psychometric Society 2018

Authors and Affiliations

  1. 1.University of HamburgHamburgGermany

Personalised recommendations