Skip to main content

Advertisement

Log in

An Evaluation of 2-deoxy-2-[18F]Fluoro-D-Glucose and 3′-deoxy-3′-[18F]-Fluorothymidine Uptake in Human Tumor Xenograft Models

  • Research Article
  • Published:
Molecular Imaging and Biology Aims and scope Submit manuscript

Abstract

Purpose

The aim of this study is to assess the variability of 2-deoxy-2-[18F]fluoro-d-glucose ([18F]-FDG) and 3′-deoxy-3′-[18F]-fluorothymidine ([18F]-FLT) uptake in pre-clinical tumor models and examine the relationship between imaging data and related histological biomarkers.

Procedures

[18F]-FDG and [18F]-FLT studies were carried out in nine human tumor xenograft models in mice. A selection of the models underwent histological analysis for endpoints relevant to radiotracer uptake. Comparisons were made between in vitro uptake, in vivo imaging, and ex vivo histopathology data using quantitative and semi-quantitative analysis.

Results

In vitro data revealed that [1-14C]-2-deoxy-d-glucose ([14C]-2DG) uptake in the tumor cell lines was variable. In vivo, [18F]-FDG and [18F]-FLT uptake was highly variable across tumor types and uptake of one tracer was not predictive for the other. [14C]-2DG uptake in vitro did not predict for [18F]-FDG uptake in vivo. [18F]-FDG SUV was inversely proportional to Ki67 and necrosis levels and positively correlated with HKI. [18F]-FLT uptake positively correlated with Ki67 and TK1.

Conclusion

When evaluating imaging biomarkers in response to therapy, the choice of tumor model should take into account in vivo baseline radiotracer uptake, which can vary significantly between models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Hawkins RA, Choi Y, Huang SC, Messa C, Hoh CK, Phelps ME (1992) Quantitating tumor glucose metabolism with FDG and PET. J Nucl Med 33(3):339–344

    PubMed  CAS  Google Scholar 

  2. Warburg O (1931) The metabolism of tumours. Smith, New York, pp 129–169

    Google Scholar 

  3. Som P, Atkins HL, Bandoypadhyay D et al (1980) A fluorinated glucose analog, 2-fluoro-2-deoxy-D-glucose (F-18): nontoxic tracer for rapid tumor detection. J Nucl Med 21(7):670–675

    PubMed  CAS  Google Scholar 

  4. Boellaard R, O'Doherty MJ, Weber WA et al (2010) FDG PET and PET/CT: EANM procedure guidelines for tumour PET imaging: version 1.0. Eur J Nucl Med Mol Imaging 37(1):181–200

    Article  PubMed  Google Scholar 

  5. Hoekstra OS, Ossenkoppele GJ, Golding R et al (1993) Early treatment response in malignant lymphoma, as determined by planar fluorine-18-fluorodeoxyglucose scintigraphy. J Nucl Med 34(10):1706–1710

    PubMed  CAS  Google Scholar 

  6. Eary JF, O’Sullivan F, Powitan Y, Chandhury KR, Bruckner JD, Conrad EU (2002) Sarcoma tumor FDG uptake measured by PET and patient outcome: a retrospective analysis. Eur J Nucl Med Mol Imaging 29(9):1149–1154

    Article  PubMed  CAS  Google Scholar 

  7. Weber WA (2010) Monitoring tumor response to therapy with 18F-FLT PET. J Nucl Med 51(6):841–844

    Article  PubMed  Google Scholar 

  8. Benz MR, Czernin J, Tap WD et al (2010) FDG-PET/CT imaging predicts histopathologic treatment responses after neoadjuvant therapy in adult primary bone sarcomas. Sarcoma 2010:143540, Epub 2010 Apr 18

    Article  PubMed  Google Scholar 

  9. Weber WA (2009) Assessing tumor response to therapy. J Nucl Med 50(Suppl 1):1S–10S

    Article  PubMed  CAS  Google Scholar 

  10. Bading JR, Shields AF (2008) Imaging of cell proliferation: status and prospects. J Nucl Med 49(Suppl 2):64S–80S

    Article  PubMed  CAS  Google Scholar 

  11. Shah C, Miller TW, Wyatt SK et al (2009) Imaging biomarkers predict response to anti-HER2 (ErbB2) therapy in preclinical models of breast cancer. Clin Cancer Res 15(14):4712–4721

    Article  PubMed  CAS  Google Scholar 

  12. Sohn HJ, Yang YJ, Ryu JS et al (2008) [18F]Fluorothymidine positron emission tomography before and 7 days after gefitinib treatment predicts response in patients with advanced adenocarcinoma of the lung. Clin Cancer Res 14(22):7423–7429

    Article  PubMed  CAS  Google Scholar 

  13. Leyton J, Alao JP, Da Costa M et al (2006) In vivo biological activity of the histone deacetylase inhibitor LAQ824 is detectable with 3’-deoxy-3’-[18F]fluorothymidine positron emission tomography. Cancer Res 66((15) (18)):9178–9185

    Article  PubMed  CAS  Google Scholar 

  14. Kenny L, Coombes RC, Vigushin DM, Al-Nahhas A, Shousha S, Aboagye EO (2007) Imaging early changes in proliferation at 1 week post chemotherapy: a pilot study in breast cancer patients with 3’-deoxy-3’-[18F]fluorothymidine positron emission tomography. Eur J Nucl Med Mol Imaging 34:1339–1347

    Article  PubMed  Google Scholar 

  15. Waldherr C, Mellinghoff IK, Tran C et al (2005) Monitoring antiproliferative responses to kinase inhibitor therapy in mice with 3’-deoxy-3’-18F-fluorothymidine PET. J Nucl Med 46:114–120

    PubMed  CAS  Google Scholar 

  16. Pio BS, Park CK, Pietras R et al (2006) Usefulness of 3’-[F-18]fluoro-3’-deoxythymidine with positron emission tomography in predicting breast cancer response to therapy. Mol Imaging Biol 8:36–42

    Article  PubMed  Google Scholar 

  17. Troost EG, Bussink J, Hoffmann AL, Boerman OC, Oyen WJ, Kaanders JH (2010) 18F-FLT PET/CT for early response monitoring and dose escalation in oropharyngeal tumors. J Nucl Med 51(6):866–874

    Article  PubMed  Google Scholar 

  18. Solit D, Santos E, Pratilas DA, et al (2007) 3-Deoxy-3-[18F]fluorothymidine positron emission tomography is a sensitive method for imaging the response of BRAF dependent tumors to MEK inhibition. Cancer Res 67(23):11463–11469

    Google Scholar 

  19. Brepoels L, Stroobants S, Verhoef G, De Groot T, Mortelmans L, De Wolf-Peeters C (2009) (18)F-FDG and (18)F-FLT uptake early after cyclophosphamide and mTOR inhibition in an experimental lymphoma model. J Nucl Med 50(7):1102–1109

    Article  PubMed  CAS  Google Scholar 

  20. Shinto A, Nair N, Dutt A, Baghel NS (2008) Early response assessment in gastrointestinal stromal tumors with FDG PET scan 24 hours after a single dose of imatinib. Clin Nucl Med 33(7):486–487

    Article  PubMed  Google Scholar 

  21. Gu J, Yamamoto H, Fukunaga H, Danno K et al (2006) Correlation of GLUT-1 overexpression, tumor size, and depth of invasion with 18F-2-fluoro-2-deoxy-D-glucose uptake by positron emission tomography in colorectal cancer. Dig Dis Sci 51(12):2198–2205

    Article  PubMed  CAS  Google Scholar 

  22. Juweid ME, Cheson BD (2006) Positron-emission tomography and assessment of cancer therapy. N Engl J Med 354(5):496–507

    Article  PubMed  CAS  Google Scholar 

  23. Wahl RL, Hutchins GD, Buchsbaum DJ et al (1991) 18F-2-deoxy-2-fluoro-D-glucose uptake into human tumor xenografts. Feasibility studies for cancer imaging with positron-emission tomography. Cancer 67(6):1544–1550

    Article  PubMed  CAS  Google Scholar 

  24. Ebenhan T, Honer M, Ametamey SM et al (2009) Comparison of [18F]-tracers in various experimental tumor models by PET imaging and identification of an early response biomarker for the novel microtubule stabilizer patupilone. Mol Imaging Biol 11(5):308–321

    Article  PubMed  CAS  Google Scholar 

  25. Hendzel MJ, Wei Y, Mancini MA et al (1997) Mitosis-specific phosphorylation of histone H3 initiates primarily within pericentromeric heterochromatin during G2 and spreads in an ordered fashion coincident with mitotic chromosome condensation. Chromosoma 106(6):348–360

    Article  PubMed  CAS  Google Scholar 

  26. Ladstein G, Bachmann IM, Straume O, Akslen LA (2010) Ki-67 expression is superior to mitotic count and novel proliferation markers PHH3, MCM4 and mitosin as a prognostic factor in thick cutaneous melanoma. BMC Cancer 10:140

    Article  PubMed  Google Scholar 

  27. Scholzen T, Gerdes J (2000) The Ki-67 protein: from the known and the unknown. J Cell Physiol 182(3):311–322

    Article  PubMed  CAS  Google Scholar 

  28. Chung JK, Lee YJ, Kim SK, Jeong JM, Lee DS, Lee MC (2004) Comparison of [18F]fluorodeoxyglucose uptake with glucose transporter-1 expression and proliferation rate in human glioma and non-small-cell lung cancer. Nucl Med Commun 25(1):11–17

    Article  PubMed  CAS  Google Scholar 

  29. Hamacher K, Coenen HH, Stöcklin G (1986) Efficient stereospecific synthesis of no-carrier-added 2-[18F]-fluoro-2-deoxy-D-glucose using aminopolyether supported nucleophilic substitution. J Nucl Med 27:235–238

    PubMed  CAS  Google Scholar 

  30. Reischl G, Blocher A, Wei R et al (2006) Simplified, automated synthesis of 3'-[18F]fluoro-3'-deoxy-thymidine ([18F]FLT) and simple method for metabolite analysis in plasma. Radiochim Acta 94:447–451

    Article  CAS  Google Scholar 

  31. Kim JS, Lee JS, Im KC, et al (2007) Performance measurement of the microPET focus 120 scanner. J Nucl Med 48(9):1527–1535

    Google Scholar 

  32. Bao Q, Newport D, Chen M, Stout DB, Chatziioannou AF (2009) Performance evaluation of the Inveon dedicated PET preclinical tomograph based on the NEMA NU-4 standards. J Nucl Med 50:401–408

    Article  PubMed  Google Scholar 

  33. Gambhir S (2004) Quantitative assay development for pet (chapter 2). In: Phelps ME (ed) PET: molecular imaging and its biological applications. Springer, Berlin

  34. McKay JS, Bigley A, Bell A et al (2006) A pilot evaluation of the use of tissue microarrays for quantitation of target distribution in drug discovery pathology. Exp Toxicol Pathol 57(3):181–193

    Article  PubMed  CAS  Google Scholar 

  35. Smith NR, James NH, Oakley I et al (2007) Acute pharmacodynamic and antivascular effects of the vascular endothelial growth factor signaling inhibitor AZD2171 in Calu-6 human lung tumor xenografts. Mol Cancer Ther 6(8):2198–2208

    Article  PubMed  CAS  Google Scholar 

  36. Hickinson DM, Klinowska T, Speake G et al (2010) AZD8931, an equipotent, reversible inhibitor of signaling by epidermal growth factor receptor, ERBB2 (HER2), and ERBB3: a unique agent for simultaneous ERBB receptor blockade in cancer. Clin Cancer Res 16(4):1159–1169

    Article  PubMed  CAS  Google Scholar 

  37. Kim SL, Kim EM, Cheong SJ et al (2009) The effect of PPAR-gamma agonist on (18)F-FDG uptake in tumor and macrophages and tumor cells. Nucl Med Biol 36(4):427–433

    Article  PubMed  CAS  Google Scholar 

  38. Lutz AM, Ray P, Willmann JK, Drescher C, Gambhir SS (2007) 2-Deoxy-2-[F-18]fluoro-D-glucose accumulation in ovarian carcinoma cell lines. Mol Imaging Biol 9(5):260–266

    Article  PubMed  CAS  Google Scholar 

  39. Wang H, Zhang J, Tian J et al (2009) Using dual-tracer PET to predict the biologic behavior of human colorectal cancer. J Nucl Med 50(11):1857–1864

    Article  PubMed  CAS  Google Scholar 

  40. Waki A, Katoa H, Yanoa R et al (1998) The importance of glucose transport activity as the rate-limiting step of 2-deoxyglucose uptake in tumor cells in vitro. Nucl Med Biol 25(7):593–597

    Article  PubMed  CAS  Google Scholar 

  41. Kallinowski F, Schlenger KH, Runkel S et al (1989) Blood flow, metabolism, cellular microenvironment, and growth rate of human tumor xenografts. Cancer Res 49(14):3759–3764

    PubMed  CAS  Google Scholar 

  42. Bergstrom M, Monazzam A, Razifar P, Ide S, Josephsson R, Langstrom B (2008) Modeling spheroid growth, PET tracer uptake, and treatment effects of the Hsp90 inhibitor NVP-AUY922. J Nucl Med 49(7):1204–1210

    Article  PubMed  Google Scholar 

  43. Jin Q, Agrawal L, Vanhorn-Ali Z, Alkhatib G (2006) GLUT-1-independent infection of the glioblastoma/astroglioma U87 cells by the human T cell leukemia virus type 1. Virology 353(1):99–110

    Article  PubMed  CAS  Google Scholar 

  44. Haberkorn U, Ziegler SI, Oberdorfer F et al (1994) FDG uptake, tumor proliferation and expression of glycolysis associated genes in animal tumor models. Nucl Med Biol 21(6):827–834

    Article  PubMed  CAS  Google Scholar 

  45. Hamada K, Tomita Y, Qiu Y et al (2008) 18F-FDG-PET of musculoskeletal tumors: a correlation with the expression of glucose transporter 1 and hexokinase II. Ann Nucl Med 22(8):699–705

    Article  PubMed  Google Scholar 

  46. de Geus-Oei LF, van Krieken JH, Aliredjo RP et al (2007) Biological correlates of FDG uptake in non-small cell lung cancer. Lung Cancer 55(1):79–87

    Article  PubMed  Google Scholar 

  47. Seo S, Hatano E, Higashi T et al (2009) P-glycoprotein expression affects 18F-fluorodeoxyglucose accumulation in hepatocellular carcinoma in vivo and in vitro. Int J Oncol 34(5):1303–1312

    PubMed  CAS  Google Scholar 

  48. van Waarde A, Been LB, Ishiwata K, Dierckx RA, Elsinga PH (2006) Early response of sigma-receptor ligands and metabolic PET tracers to 3 forms of chemotherapy: an in vitro study in glioma cells. J Nucl Med 47(9):1538–1545

    Google Scholar 

  49. McKinley E, Guleryuz S, Zhao P et al (2010) Thymidine salvage to reflect tumor cell proliferation: Implications for 18F-FLT PET as a biomarker in oncology. J Nucl Med 51:446, MEETING ABSTRACTS

    Google Scholar 

  50. Buck AK, Bommer M, Stilgenbauer S et al (2006) Molecular imaging of proliferation in malignant lymphoma. Cancer Res 66(22):11055–11061

    Article  PubMed  CAS  Google Scholar 

  51. Buck AK, Kratochwil C, Glatting G et al (2007) Early assessment of therapy response in malignant lymphoma with the thymidine analogue [18F]FLT. Eur J Nucl Med Mol Imaging 34(11):1775–1782

    Article  PubMed  CAS  Google Scholar 

  52. Schwartz JL, Tamura Y, Jordan R, Grierson JR, Krohn KA (2003) Monitoring tumor cell proliferation by targeting DNA synthetic processes with thymidine and thymidine analogs. J Nucl Med 44(12):2027–2032

    PubMed  CAS  Google Scholar 

  53. Workman P, Twentyman P, Balkwill F et al (1998) United Kingdom Co-ordinating Committee on Cancer Research (UKCCCR) Guidelines for the Welfare of Animals in Experimental Neoplasia (Second Edition). Br J Cancer 77(1):1–10

    Article  Google Scholar 

Download references

Acknowledgements

We thank the Radiopharmacy of the University Hospital of Tübingen for providing the radiotracers. We also thank John Foster, Alison Bigley, and Neil Gray of AstraZeneca for providing immunohistochemistry support.

Conflict of Interest

All work performed was funded by AstraZeneca. However, since no AstraZeneca product was evaluated in this study, this does not create any conflict of interest. Bernd Pichler has consulted for AstraZeneca, BayerHealthcare, Boehringer-Ingelheim, and Siemens Healthcare in the last 3 years. All other authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heather Keen.

Additional information

Ethics Statement

Animal experiments were performed according to the European ethical guidelines of animal experimentation, and in compliance with and the United Kingdom Co-ordinating Committee on Cancer Research guidelines [53]. The animal care unit at Oncodesign is authorized by the French ministries of Agriculture and Research (Agreement No. A21231011). All procedures with animals carried out at Oncodesign and the University of Tübingen were approved by the Animal Care and Use Committee of Pharmacy and Medicine University (Dijon) and were submitted to the ethical committee of the University of Tübingen (Tübingen, Germany). Alderley Park studies were carried out in accordance with the UK Home Office Animals (Scientific Procedures) Act 1986.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Keen, H., Pichler, B., Kukuk, D. et al. An Evaluation of 2-deoxy-2-[18F]Fluoro-D-Glucose and 3′-deoxy-3′-[18F]-Fluorothymidine Uptake in Human Tumor Xenograft Models. Mol Imaging Biol 14, 355–365 (2012). https://doi.org/10.1007/s11307-011-0504-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11307-011-0504-4

Key words

Navigation