, 14:49 | Cite as

Uncovering the metabolic response of abalone (Haliotis midae) to environmental hypoxia through metabolomics

  • Leonie Venter
  • Du Toit Loots
  • Lodewyk Japie Mienie
  • Peet J. Jansen van Rensburg
  • Shayne Mason
  • Andre Vosloo
  • Jeremie Zander Lindeque
Original Article



Oxygen is essential for metabolic processes and in the absence thereof alternative metabolic pathways are required for energy production, as seen in marine invertebrates like abalone. Even though hypoxia has been responsible for significant losses to the aquaculture industry, the overall metabolic adaptations of abalone in response to environmental hypoxia are as yet, not fully elucidated.


To use a multiplatform metabolomics approach to characterize the metabolic changes associated with energy production in abalone (Haliotis midae) when exposed to environmental hypoxia.


Metabolomics analysis of abalone adductor and foot muscle, left and right gill, hemolymph, and epipodial tissue samples were conducted using a multiplatform approach, which included untargeted NMR spectroscopy, untargeted and targeted LC–MS spectrometry, and untargeted and semi-targeted GC-MS spectrometric analyses.


Increased levels of anaerobic end-products specific to marine animals were found which include alanopine, strombine, tauropine and octopine. These were accompanied by elevated lactate, succinate and arginine, of which the latter is a product of phosphoarginine breakdown in abalone. Primarily amino acid metabolism was affected, with carbohydrate and lipid metabolism assisting with anaerobic energy production to a lesser extent. Different tissues showed varied metabolic responses to hypoxia, with the largest metabolic changes in the adductor muscle.


From this investigation, it becomes evident that abalone have well-developed (yet understudied) metabolic mechanisms for surviving hypoxic periods. Furthermore, metabolomics serves as a powerful tool for investigating the altered metabolic processes in abalone.


Abalone Aquaculture Environmental hypoxia Metabolism Metabolomics 



We gratefully acknowledge the North-West University and the Technology Innovation Agency of the Department of Science and Technology of South Africa for financial support. We also thank HIK Abalone Farm (Pty) Ltd, South Africa for supplying experimental animals and welcoming us to your farm.

Compliance with Ethical Standards

Conflict of interest

All authors declare that they have no conflict of interest.

Ethical approval

All of the research pertaining to the perturbations and abalone collection was done in accordance with institutional guidelines of the relevant institutional committees and granted Aquaculture Research Permit.

Supplementary material

11306_2018_1346_MOESM1_ESM.docx (39 kb)
Supplementary material 1 (DOCX 38 KB)
11306_2018_1346_MOESM2_ESM.docx (24 kb)
Supplementary material 2 (DOCX 24 KB)
11306_2018_1346_MOESM3_ESM.docx (43 kb)
Supplementary material 3 (DOCX 43 KB)


  1. Badenhorst, C. P. S., Erasmus, E., Van der Sluis, R., Nortje, C., & Van Dijk, A. A. (2014). A new perspective on the importance of glycine conjugation in the metabolism of aromatic acids. Drug Metabolism Reviews, 46(3), 343–361.CrossRefPubMedGoogle Scholar
  2. Barkai, R., & Griffiths, C. (1988). An energy budget for the South African abalone Haliotis midae Linnaeus. Journal of Molluscan Studies, 54(1), 43–51.CrossRefGoogle Scholar
  3. Boardman, L., Sørensen, J. G., Koštál, V., Šimek, P., & Terblanche, J. S. (2016). Chilling slows anaerobic metabolism to improve anoxia tolerance of insects. Metabolomics, 12(12), 176.CrossRefGoogle Scholar
  4. Britz, P., & Venter, S. (2016). Aquaculture review: South Africa. World Aquaculture, 47(4), 19–28.Google Scholar
  5. Carroll, J. L., & Wells, R. M. (1995). Strategies of anaerobiosis in New Zealand infaunal bivalves: Adaptations to environmental and functional hypoxia. New Zealand Journal of Marine and Freshwater Research, 29(2), 137–146.CrossRefGoogle Scholar
  6. Cook, P. A. (2014). The worldwide abalone industry. Modern Economy, 5(13), 1181–1186.CrossRefGoogle Scholar
  7. Dona, A. C., Jiménez, B., Schäfer, H., Humpfer, E., Spraul, M., Lewis, M. R., et al. (2014). Precision high-throughput proton NMR spectroscopy of human urine, serum, and plasma for large-scale metabolic phenotyping. Analytical Chemistry, 86(19), 9887–9894.CrossRefPubMedGoogle Scholar
  8. Dunn, W. B. (2008). Current trends and future requirements for the mass spectrometric investigation of microbial, mammalian and plant metabolomes. Physical Biology, 5(1), 011001.CrossRefPubMedGoogle Scholar
  9. Dunphy, B. J., Watts, E., & Ragg, N. L. (2015). Identifying thermally-stressed adult green-lipped mussels (Perna canaliculus Gmelin, 1791) via metabolomic profiling. American Malacological Bulletin, 33(1), 127–135.CrossRefGoogle Scholar
  10. Durazo-Beltrán, E., Viana, M. A. T., D’Abramo, L. R., & Toro-Vazquez, J. F. (2004). Effects of starvation and dietary lipid on the lipid and fatty acid composition of muscle tissue of juvenile green abalone (Haliotis fulgens). Aquaculture, 238(1), 329–341.CrossRefGoogle Scholar
  11. Ellis, S., & Steyn, H. (2003). Practical significance (effect sizes) versus or in combination with statistical significance (p values): Research note. Management Dynamics: Journal of the Southern African Institute for Management Scientists, 12(4), 51–53.Google Scholar
  12. Feala, J. D., Coquin, L., Zhou, D., Haddad, G. G., Paternostro, G., & McCulloch, A. D. (2009). Metabolism as means for hypoxia adaptation: Metabolic profiling and flux balance analysis. BMC Systems Biology, 3(1), 91.CrossRefPubMedPubMedCentralGoogle Scholar
  13. Fields, J. H. (1983). Alternatives to lactic acid: Possible advantages. Journal of Experimental Zoology Part A: Ecological Genetics and Physiology, 228(3), 445–457.CrossRefGoogle Scholar
  14. Fields, J. H., & Storey, K. B. (1987). Tissue-specific alanopine dehydrogenase from the gill and strombine dehydrogenase from the foot muscle of the cherrystone clam Mercenaria mercenaria (Linn.). Journal of Experimental Marine Biology and Ecology, 105(2–3), 175–185.CrossRefGoogle Scholar
  15. Fujimori, T., & Abe, H. (2002). Physiological roles of free d-and l-alanine in the crayfish Procambarus clarkii with special reference to osmotic and anoxic stress responses. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 131(4), 893–900.CrossRefGoogle Scholar
  16. Gäde, G. (1988). Energy metabolism during anoxia and recovery in shell adductor and foot muscle of the gastropod mollusc Haliotis lamellosa: Formation of the novel anaerobic end product tauropine. The Biological Bulletin, 175(1), 122–131.CrossRefGoogle Scholar
  17. Gäde, G., Carlsson, K.-H., & Meinardus, G. (1984). Energy metabolism in the foot of the marine gastropod Nassa mutabilis during environmental and functional anaerobiosis. Marine Biology, 80(1), 49–56.CrossRefGoogle Scholar
  18. Gäde, G., & Grieshaber, M. K. (1986). Pyruvate reductases catalyze the formation of lactate and opines in anaerobic invertebrates. Comparative Biochemistry and Physiology Part B: Comparative Biochemistry, 83(2), 255–272.CrossRefGoogle Scholar
  19. Garrett, R., & Grisham, C. (2010). Biochemistry, Brooks. (4th ed., pp. 511–812). Belmont, CA: Brooks Cole, Cengage Learning.Google Scholar
  20. Green, S. R., & Storey, K. B. (2016). Regulation of crayfish, Orconectes virilis, tail muscle lactate dehydrogenase (LDH) in response to anoxic conditions is associated with alterations in phosphorylation patterns. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 202, 67–74.CrossRefGoogle Scholar
  21. Grieshaber, M., Hardewig, I., Kreutzer, U., & Pörtner, H.-O. (1993). Physiological and metabolic responses to hypoxia in invertebrates. In Reviews of physiology, biochemistry and pharmacology (Vol. 125, pp. 43–147). Berlin: Springer.Google Scholar
  22. Grubert, M. A., Dunstan, G. A., & Ritar, A. J. (2004). Lipid and fatty acid composition of pre-and post-spawning blacklip (Haliotis rubra) and greenlip (Haliotis laevigata) abalone conditioned at two temperatures on a formulated feed. Aquaculture, 242(1), 297–311.CrossRefGoogle Scholar
  23. Harcet, M., Perina, D., & Pleše, B. (2013). Opine dehydrogenases in marine invertebrates. Biochemical Genetics, 51(9–10), 666–676.CrossRefPubMedGoogle Scholar
  24. Harris, J. O., Maguire, G. B., Edwards, S., & Hindrum, S. M. (1998). Effect of ammonia on the growth rate and oxygen consumption of juvenile greenlip abalone, Haliotis laevigata Donovan. Aquaculture, 160(3), 259–272.CrossRefGoogle Scholar
  25. Hayat, S., Hayat, Q., Alyemeni, M. N., Wani, A. S., Pichtel, J., & Ahmad, A. (2012). Role of proline under changing environments: A review. Plant Signaling & Behavior, 7(11), 1456–1466.CrossRefGoogle Scholar
  26. Hochachka, P. W., Fields, J., & Mustafa, T. (1973). Animal life without oxygen: Basic biochemical mechanisms. American Zoologist, 13(2), 543–555.CrossRefGoogle Scholar
  27. Hooper, C., Day, R., Slocombe, R., Benkendorff, K., & Handlinger, J. (2014). Histopathology and haemolymph biochemistry following anaesthesia and movement in farmed Australian abalone (Haliotis rubra × Haliotis laevigata). Aquaculture, 422, 202–210.CrossRefGoogle Scholar
  28. Irwin, C., van Reenen, M., Mason, S., Mienie, L. J., Westerhuis, J. A., & Reinecke, C. J. (2016). Contribution towards a metabolite profile of the detoxification of benzoic acid through glycine conjugation: An intervention study. PLoS ONE, 11(12), e0167309.CrossRefPubMedPubMedCentralGoogle Scholar
  29. Kreutzer, U., Siegmund, B. R., & Grieshaber, M. K. (1989). Parameters controlling opine formation during muscular activity and environmental hypoxia. Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology, 159(5), 617–628.CrossRefGoogle Scholar
  30. Li, P., Mai, K., Trushenski, J., & Wu, G. (2009). New developments in fish amino acid nutrition: Towards functional and environmentally oriented aquafeeds. Amino Acids, 37(1), 43–53.CrossRefPubMedGoogle Scholar
  31. Lindeque, J. Z., Hidalgo, J., Louw, R., & van der Westhuizen, F. H. (2013). Systemic and organ specific metabolic variation in metallothionein knockout mice challenged with swimming exercise. Metabolomics, 9(2), 418–432.CrossRefGoogle Scholar
  32. Lindeque, J. Z., van Rensburg, P. J. J., Louw, R., van der Westhuizen, F. H., Florit, S., Ramírez, L., et al. (2015). Obesity and metabolomics: Metallothioneins protect against high-fat diet-induced consequences in metallothionein knockout mice. Omics: A Journal of Integrative Biology, 19(2), 92–103.CrossRefPubMedGoogle Scholar
  33. Liu, C., Shin, P., & Cheung, S. (2014). Comparisons of the metabolic responses of two subtidal nassariid gastropods to hypoxia and re-oxygenation. Marine Pollution Bulletin, 82(1), 109–116.CrossRefPubMedGoogle Scholar
  34. Loots, D. T., Erasmus, E., & Mienie, L. J. (2005). Identification of 19 new metabolites induced by ab normal amino acid conjugation in isovaleric acidemia. Clinical Chemistry, 51(8), 1510–1512.CrossRefPubMedGoogle Scholar
  35. Lu, J., Feng, J., Cai, S., & Chen, Z. (2017). Metabolomic responses of Haliotis diversicolor to organotin compounds. Chemosphere, 168, 860–869.CrossRefPubMedGoogle Scholar
  36. Lu, J., Shi, Y., Wang, S., Chen, H., Cai, S., & Feng, J. (2016). NMR-based metabolomic analysis of Haliotis diversicolor exposed to thermal and hypoxic stresses. Science of The Total Environment, 545, 280–288.CrossRefPubMedGoogle Scholar
  37. Mason, S., van Furth, A. M., Mienie, L. J., Engelke, U. F., Wevers, R. A., Solomons, R., et al. (2015). A hypothetical astrocyte–microglia lactate shuttle derived from a 1H NMR metabolomics analysis of cerebrospinal fluid from a cohort of South African children with tuberculous meningitis. Metabolomics, 11(4), 822–837.CrossRefPubMedGoogle Scholar
  38. Morash, A. J., & Alter, K. (2016). Effects of environmental and farm stress on abalone physiology: Perspectives for abalone aquaculture in the face of global climate change. Reviews in Aquaculture, 8(4), 342–368.CrossRefGoogle Scholar
  39. Mouton, A. (2017). Red tide devastates South African abalone farms. Aquaculture Magazine, 31, 32–35.Google Scholar
  40. Müller, M., Mentel, M., van Hellemond, J. J., Henze, K., Woehle, C., Gould, S. B., et al. (2012). Biochemistry and evolution of anaerobic energy metabolism in eukaryotes. Microbiology and Molecular Biology Reviews, 76(2), 444–495.CrossRefPubMedPubMedCentralGoogle Scholar
  41. Nollens, H. H., Keogh, J. A., & Probert, P. K. (2004). Haematological pathology of shell lesions in the New Zealand abalone, Haliotis iris (Mollusca: Gastropoda). Comparative Clinical Pathology, 12(4), 211–216.CrossRefGoogle Scholar
  42. O’omolo, S., Gäde, G., Cook, P., & Brown, A. (2003). Can the end products of anaerobic metabolism, tauropine and d-lactate, be used as metabolic stress indicators during transport of live South African abalone Haliotis midae. African Journal of Marine Science, 25(1), 301–309.CrossRefGoogle Scholar
  43. Pitcher, G., & Calder, D. (2000). Harmful algal blooms of the southern Benguela current: A review and appraisal of monitoring from 1989 to 1997. African Journal of Marine Science, 22, 255–271.CrossRefGoogle Scholar
  44. Prathomya, P., Prisingkorn, W., Jakovlić, I., Deng, F.-Y., Zhao, Y.-H., & Wang, W.-M. (2017). 1H NMR-based metabolomics approach reveals metabolic alterations in response to dietary imbalances in Megalobrama amblycephala. Metabolomics, 13(2), 17.CrossRefGoogle Scholar
  45. Ragg, N. L., & Taylor, H. H. (2006). Heterogeneous perfusion of the paired gills of the abalone Haliotis iris Martyn 1784: An unusual mechanism for respiratory control. Journal of Experimental Biology, 209(3), 475–483.CrossRefPubMedGoogle Scholar
  46. Rosenblum, E., Viant, M., Braid, B., Moore, J., Friedman, C., & Tjeerdema, R. (2005). Characterizing the metabolic actions of natural stresses in the California red abalone, Haliotis rufescens using 1H NMR metabolomics. Metabolomics, 1(2), 199–209.CrossRefGoogle Scholar
  47. Roznere, I., Watters, G. T., Wolfe, B. A., & Daly, M. (2014). Nontargeted metabolomics reveals biochemical pathways altered in response to captivity and food limitation in the freshwater mussel Amblema plicata. Comparative Biochemistry and Physiology Part D: Genomics and Proteomics, 12, 53–60.Google Scholar
  48. Salway, J. G. (2004). Metabolism at a glance. Guildford: Wiley.Google Scholar
  49. Sato, M., Takeuchi, M., Kanno, N., Nagahisa, E., & Sato, Y. (1993). Distribution of opine dehydrogenases and lactate dehydrogenase activities in marine animals. Comparative Biochemistry and Physiology Part B: Comparative Biochemistry, 106(4), 955–960.CrossRefGoogle Scholar
  50. Schmidt-Nielsen, K. (2007). Animal physiology: Adaptation and environment. New York: Cambridge University Press.Google Scholar
  51. Schymanski, E. L., Jeon, J., Gulde, R., Fenner, K., Ruff, M., Singer, H. P., et al. (2014). Identifying small molecules via high resolution mass spectrometry: Communicating confidence. Environmental Science and Technology, 48(4), 2097–2098.CrossRefPubMedGoogle Scholar
  52. Shen, Y., Hixson, K. K., Tolic, N., Camp, D. G., Purvine, S. O., Moore, R. J., et al. (2008). Mass spectrometry analysis of proteome-wide proteolytic post-translational degradation of proteins. Analytical Chemistry, 80(15), 5819–5828.CrossRefPubMedPubMedCentralGoogle Scholar
  53. Slabbert, R., & Roodt-Wilding, R. (2006). Non-destructive sampling of juvenile abalone using epipodial tentacles and mucus: Method and application. African Journal of Marine Science, 28(3–4), 719–721.CrossRefGoogle Scholar
  54. Sokolova, I. M., Frederich, M., Bagwe, R., Lannig, G., & Sukhotin, A. A. (2012). Energy homeostasis as an integrative tool for assessing limits of environmental stress tolerance in aquatic invertebrates. Marine Environmental Research, 79, 1–15.CrossRefPubMedGoogle Scholar
  55. Storey, K. B. (2004). Adventures in oxygen metabolism. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 139(3), 359–369.CrossRefGoogle Scholar
  56. Storey, K. B. (2005). Functional metabolism: Regulation and adaptation. Hoboeken: Wiley.Google Scholar
  57. Sumner, L. W., Amberg, A., Barrett, D., Beale, M. H., Beger, R., Daykin, C. A., et al. (2007). Proposed minimum reporting standards for chemical analysis. Metabolomics, 3(3), 211–221.CrossRefPubMedPubMedCentralGoogle Scholar
  58. Taylor, H., & Ragg, N. (2005). The role of body surfaces and ventilation in gas exchange of the abalone, Haliotis iris. Journal of Comparative Physiology B, 175(7), 463–478.CrossRefGoogle Scholar
  59. Tripp-Valdez, M. A., Bock, C., Lucassen, M., Lluch-Cota, S. E., Sicard, M. T., Lannig, G., et al. (2017). Metabolic response and thermal tolerance of green abalone juveniles (Haliotis fulgens: Gastropoda) under acute hypoxia and hypercapnia. Journal of Experimental Marine Biology and Ecology, 497, 11–18.CrossRefGoogle Scholar
  60. Venter, L., van Rensburg, P. J. J., Loots, D. T., Vosloo, A., & Lindeque, J. Z. (2016a). Untargeted metabolite profiling of abalone using gas chromatography mass spectrometry. Food Analytical Methods, 9(5), 1254–1261.CrossRefGoogle Scholar
  61. Venter, L., Lindeque, Z., van Rensburg, P. J. J., Van der Westhuizen, F., Smuts, I., & Louw, R. (2015). Untargeted urine metabolomics reveals a biosignature for muscle respiratory chain deficiencies. Metabolomics, 11(1), 111–121.CrossRefGoogle Scholar
  62. Venter, L., Loots, D. T., Vosloo, A., Jansen van Rensburg, P., & Lindeque, J. Z. (2016b). Abalone growth and associated aspects: Now from a metabolic perspective. Reviews in Aquaculture, 2, 2016.Google Scholar
  63. Venter, L., van Rensburg, P. J. J. , Loots, D. T., Vosloo, A., & Lindeque, J. Z. (2017). From untargeted LC–QTOF analysis to characterisation of opines in abalone adductor muscle: Theory meets practice. Journal of Chromatography B, 1071, 44–48.CrossRefGoogle Scholar
  64. Vosloo, D., van Rensburg, L., & Vosloo, A. (2013). Oxidative stress in abalone: The role of temperature, oxygen and L-proline supplementation. Aquaculture, 416, 265–271.CrossRefGoogle Scholar
  65. Vosloo, D., & Vosloo, A. (2010). Response of cold-acclimated, farmed South African abalone (Haliotis midae) to short-term and long-term changes in temperature. Journal of Thermal Biology, 35(7), 317–323.CrossRefGoogle Scholar
  66. Warrack, B. M., Hnatyshyn, S., Ott, K.-H., Reily, M. D., Sanders, M., Zhang, H., et al. (2009). Normalization strategies for metabonomic analysis of urine samples. Journal of Chromatography B, 877(5), 547–552.CrossRefGoogle Scholar
  67. Wasko, A. P., Martins, C., Oliveira, C., & Foresti, F. (2003). Non-destructive genetic sampling in fish. An improved method for DNA extraction from fish fins and scales. Hereditas, 138(3), 161–165.CrossRefPubMedGoogle Scholar
  68. Wells, R. M., Baldwin, J., Speed, S. R., & Weber, R. E. (1998). Haemocyanin function in the New Zealand abalones Haliotis iris and H. australis: Relationships between oxygen-binding properties, muscle metabolism and habitat. Marine and Freshwater Research, 49(2), 143–149.CrossRefGoogle Scholar
  69. Whitney, E., & Rolfes, S. R. (2008). Understanding nutrition. Belmont: Cengage Learning.Google Scholar
  70. Wilbur, K. M., & Hochachka, P. W. (2016). The Mollusca: Environmental biochemistry and physiology (Vol. 2). New York: Academic Press.Google Scholar
  71. Willers, C., van Rensburg, P. J. J., & Claassens, S. (2016). Can a metabolomics-based approach be used as alternative to analyse fatty acid methyl esters from soil microbial communities? Soil Biology and Biochemistry, 103, 417–428.CrossRefGoogle Scholar
  72. Wishart, D. S., Jewison, T., Guo, A. C., Wilson, M., Knox, C., Liu, Y., et al. (2012). HMDB 3.0—the human metabolome database in 2013. Nucleic Acids Research, 41(D1), D801–D807.CrossRefPubMedPubMedCentralGoogle Scholar
  73. Xia, J., Sinelnikov, I. V., Han, B., & Wishart, D. S. (2015). MetaboAnalyst 3.0—making metabolomics more meaningful. Nucleic Acids Research, 43(W1), 251–257.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Leonie Venter
    • 1
  • Du Toit Loots
    • 1
  • Lodewyk Japie Mienie
    • 1
  • Peet J. Jansen van Rensburg
    • 1
  • Shayne Mason
    • 1
  • Andre Vosloo
    • 2
  • Jeremie Zander Lindeque
    • 1
  1. 1.Human MetabolomicsNorth-West UniversityPotchefstroomSouth Africa
  2. 2.School of Life SciencesUniversity of KwaZulu-NatalDurbanSouth Africa

Personalised recommendations