Skip to main content
Log in

Effect of gut microbiota on host whole metabolome

  • Original Article
  • Published:
Metabolomics Aims and scope Submit manuscript

Abstract

Introduction

Recent advances in microbiome research have revealed the diverse participation of gut microbiota in a number of diseases. Bacteria-specific endogenous small molecules are produced in the gut, are transported throughout the whole body by circulation, and play key roles in disease establishment. However, the factors and mechanisms underlying these microbial influences largely remain unknown.

Objectives

The purpose of this study was to use metabolomics to better understand the influence of microbiota on host physiology.

Methods

Germ-free mice (GF) were orally administered with the feces of specific pathogen-free (SPF) mice and were maintained in a vinyl isolator for 4 weeks for establishing the so-called ExGF mice. Comparative metabolomics was performed on luminal contents, feces, urine, plasma, and tissues of GF and ExGF mice.

Results

The metabolomics profile of 1716 compounds showed marked difference between GF and ExGF for each matrix. Intestinal differences clearly showed the contribution of microbiota to host digestive activities. In addition, colonic metabolomics revealed the efficient conversion of primary to secondary metabolites by microbiota. Furthermore, metabolomics of tissues and excrements demonstrated the effect of microbiota on the accumulation of metabolites in tissues and during excretion. These effects included known bacterial effects (such as bile acids and amino acids) as well as novel ones, including a drastic decrease of sphingolipids in the host.

Conclusion

The diverse effects of microbiota on different sites of the host metabolome were revealed and novel influences on host physiology were demonstrated. These findings should contribute to a deeper understanding of the influence of gut microbiota on disease states and aid in the development of effective intervention strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

5HL:

5-Hydroxylysine

3MH:

3-Methylhistidine

BCAA:

Branched-chain amino acid

FA:

Formic acid

FFA:

Free fatty acid

GF:

Germ-free

IACUC:

Institutional animal care and use committees

MS:

Mass spectrometry

NASH:

Non-alcoholic steatohepatitis

NCI:

National Cancer Institute

NGS:

Next generation sequencer

OTU:

Operational taxonomic unit

QIIME:

Quantitative insights into microbial ecology

SPF:

Specific pathogen-free

UPLC:

Ultra-performance liquid chromatography

HESI-II:

Heated electrospray ionization-II

PFPA:

Perfluoropentanoic acid

HILIC:

Hydrophilic interaction chromatography

FDR:

False discovery rate

SPF:

Specific pathogen-free

References

  • Antener, I., Verwilghen, A. M., Van Geert, C., & Mauron, J. (1983). Biochemical study of malnutrition. Part VI: Histidine and its metabolites. International Journal for Vitamin and Nutrition Research. Internationale Zeitschrift fur Vitamin- und Ernahrungsforschung. Journal international de vitaminologie et de nutrition, 53(2), 199–209.

    CAS  PubMed  Google Scholar 

  • Arora, T., & Bäckhed, F. (2016). The gut microbiota and metabolic disease: Current understanding and future perspectives. Journal of Internal Medicine, 280(4), 339–349.

    Article  CAS  PubMed  Google Scholar 

  • Caporaso, J. G., Kuczynski, J., Stombaugh, J., Bittinger, K., & Bushman, F. D. (2010). QIIME allows analysis of high-throughput community sequencing data. Nature Methods, 7(5), 335–336.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chaurasia, B., & Summers, S. A. (2015). Ceramides: Lipotoxic inducers of metabolic disorders. Trends in Endocrinology and Metabolism: TEM, 26(10), 538–550.

    Article  CAS  PubMed  Google Scholar 

  • Chen, K. C., Forsyth, P. S., Buchanan, T. M., & Holmes, K. K. (1979). Amine content of vaginal fluid from untreated and treated patients with nonspecific vaginitis. The Journal of Clinical Investigation, 63(5), 828–835.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choi, H. H., & Cho, Y. S. (2016). Fecal microbiota transplantation: Current applications, effectiveness, and future perspectives. Clinical Endoscopy, 49(3), 257–265.

    Article  PubMed  PubMed Central  Google Scholar 

  • Collins, S., & Reid, G. (2016). Distant site effects of ingested prebiotics. Nutrients. doi:10.3390/nu8090523.

    Google Scholar 

  • Dai, Z. L., Wu, G., & Zhu, W. Y. (2011). Amino acid metabolism in intestinal bacteria: Links between gut ecology and host health. Frontiers in Bioscience (Landmark Ed), 1(16), 1768–1786.

    Article  Google Scholar 

  • DeSantis, T. Z., Hugenholtz, P., Larsen, N., Rojas, M., Brodie, E. L., Keller, K., et al. (2006). Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Applied and Environmental Microbiology, 72(7), 5069–5072.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Donia, M. S., & Fischbach, M. A. (2015). Small molecules from the human microbiota. Science, 349(6246), 1254766. doi:10.1126/science.1254766.

    Article  PubMed  PubMed Central  Google Scholar 

  • Dragsted, L. O. (2010). Biomarkers of meat intake and the application of nutrigenomics. Meat Science, 84, 301–307.

    Article  CAS  PubMed  Google Scholar 

  • Evans, A. M., DeHaven, C. D., Barrett, T., Mitchell, M., & Milgram, E. (2009). Integrated, nontargeted ultra high performance liquid chromatography/electrospray ionization tandem mass spectrometry platform for the identification and relative quantification of the small-molecule complement of biological systems. Analytical Chemistry, 81, 6656–6667.

    Article  CAS  PubMed  Google Scholar 

  • Evans, A. M., Bridgewater, B. R., Miller, L. A. D., Mitchell, M. W., Robinson, R. J., Dai, H., et al. (2014). High resolution mass spectrometry improves data quantity and quality as compared to unit mass resolution mass spectrometry in high-throughput profiling metabolomics. Metabolomics, 4(2), 132.

    Google Scholar 

  • Felizardo, R. J., Castoldi, A., Andrade-Oliveira, V., & Câmara, N. O. (2016). The microbiota and chronic kidney diseases: A double-edged sword. Clinical & Translational Immunology, 5(6), e86.

    Article  Google Scholar 

  • Fujita, T., Hada, T., & Higashino, K. (1999). Origin of d- and l-pipecolic acid in human physiological fluids: A study of the catabolic mechanism to pipecolic acid using the lysine loading test. Clinica Chimica Acta; International Journal of Clinical Chemistry, 287(1–2), 145–156.

    Article  CAS  PubMed  Google Scholar 

  • Girbovan, A., Sur, G., Samasca, G., & Lupan, I. (2017). Dysbiosis a risk factor for celiac disease. Medical Microbiology and Immunology. doi:10.1007/s00430-017-0496-z.

    PubMed  Google Scholar 

  • Hamaker, B. R., & Tuncil, Y. E. (2014). A perspective on the complexity of dietary fiber structures and their potential effect on the gut microbiota. Journal of Molecular Biology, 426(23), 3838–3850.

    Article  CAS  PubMed  Google Scholar 

  • Jahn, D., Rau, M., Wohlfahrt, J., Hermanns, H. M., & Geier, A. (2016). Non-alcoholic steatohepatitis: From pathophysiology to novel therapies. Digestive Diseases (Basel, Switzerland), 34(4), 356–363.

    Article  Google Scholar 

  • Johnson, C. H., Spilker, M. E., Goetz, L., Peterson, S. N., & Siuzdak, G. (2016). Metabolite and microbiome interplay in cancer immunotherapy. Cancer Research, 76(21), 6146–6152.

    Article  CAS  PubMed  Google Scholar 

  • Kasubuchi, M., Hasegawa, S., Hiramatsu, T., Ichimura, A., & Kimura, I. (2015). Dietary gut microbial metabolites, short-chain fatty acids, and host metabolic regulation. Nutrient, 7(4), 2839–2849.

    Article  CAS  Google Scholar 

  • Kawada, Y., Yokoyama, S., Yanase, E., Niwa, T., & Suzuki, T. (2016). The production of S-equol from daidzein is associated with a cluster of three genes in Eggerthella sp. YY7918. Bioscience Microbiota, Food and Health, 35(3), 113–121.

    Article  Google Scholar 

  • Kim, D., Yoo, S. A., & Kim, W. U. (2016). Gut microbiota in autoimmunity: Potential for clinical applications. Archives of Pharmacal Research, 39(11), 1565–1576.

    Article  CAS  PubMed  Google Scholar 

  • Lee, I. A., Bae, E. A., Hyun, Y. J., & Kim, D. H. (2010). Dextran sulfate sodium and 2,4,6-trinitrobenzene sulfonic acid induce lipid peroxidation by the proliferation of intestinal gram-negative bacteria in mice. Journal of Inflammation. doi:10.1186/1476-9255-7-7.

    Google Scholar 

  • Levy, M., Thaiss, C. A., Zeevi, D., Dohnalová, L., Zilberman-Schapira, G., & Elinav, E. (2015). Microbiota-modulated metabolites shape the intestinal microenvironment by regulating NLRP6 inflammasome signaling. Cell, 163(6), 1428–1443.

    Article  CAS  PubMed  Google Scholar 

  • Magkos, F., Bradley, D., Schweitzer, G. G., Finck, B. N., Eagon, J. C., & Ilkayeva, O. (2013). Effect of Roux-en-Y gastric bypass and laparoscopic adjustable gastric banding on branched-chain amino acid metabolism. Diabetes, 62(8), 2757–2761.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mamo, G. (2016). Anaerobes as sources of bioactive compounds and health promoting tools. Advances in Biochemical Engineering/Biotechnology, 156, 433–464.

    PubMed  Google Scholar 

  • Marcobal, A., Yusufaly, T., Higginbottom, S., Snyder, M., Sonnenburg, J. L., & Mias, G. I. (2015). Metabolome progression during early gut microbial colonization of gnotobiotic mice. Scientific Reports, 5, 11589. doi:10.1038/srep11589.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martin, F. P., Dumas, M. E., Wang, Y., Legido-Quigley, C., Yap, I. K., & Tang, H. (2007). A top-down systems biology view of microbiome-mammalian metabolic interactions in a mouse model. Molecular Systems Biology, 3, 112.

    Article  PubMed  PubMed Central  Google Scholar 

  • Matsumoto, M., Kibe, R., Ooga, T., Aiba, Y., Kurihara, S., & Benno, Y. (2012). Impact of intestinal microbiota on intestinal luminal metabolome. Scientific Reports, 2, 233. doi:10.1038/srep00233.

    Article  PubMed  PubMed Central  Google Scholar 

  • Matsumoto, M., Kibe, R., Ooga, T., Aiba, Y., Sawaki, E., Koga, Y., et al. (2013). Cerebral low-molecular metabolites influenced by intestinal microbiota: a pilot study. Frontiers in Systems Neuroscience, 7, 9. doi:10.3389/fnsys.2013.00009.

    Article  PubMed  PubMed Central  Google Scholar 

  • Midtvedt, T., Zabarovsky, E., Norin, E., Bark, J., Gizatullin, R., & Kashuba, V. (2013). Increase of faecal tryptic activity relates to changes in the intestinal microbiome: Analysis of Crohn’s disease with a multidisciplinary platform. PLoS ONE, 8(6), e66074.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nagao-Kitamoto, H., Kitamoto, S., Kuffa, P., & Kamada, N. (2016). Metabolomics: Pathogenic role of the gut microbiota in gastrointestinal diseases. Intestinal Research, 14(2), 127–138.

    Article  PubMed  PubMed Central  Google Scholar 

  • Narushima, S., Sugiura, Y., Oshima, K., Atarashi, K., Hattori, M., Suematsu, M., et al. (2014). Characterization of the 17 strains of regulatory T cell-inducing human-derived Clostridia. Gut Microbes, 5(3), 333–339.

    Article  PubMed  PubMed Central  Google Scholar 

  • Nilsson, A. (1969). Metabolism of sphingomyelin in the intestinal tract of the rat. Biochimica et Biophysica Acta, 164(3), 575–584.

    Article  Google Scholar 

  • Nyangale, E. P., Mottram, D. S., & Gibson, G. R. (2012). Gut microbial activity, implications for health and disease: The potential role of metabolite analysis. Journal of Proteome Research, 11(12), 5573–5585.

    Article  CAS  PubMed  Google Scholar 

  • Ohta, T., Masutomi, N., Tsutsui, N., Sakairi, T., Mitchell, M., Milburn, M. V., et al. (2009). Untargeted metabolomic profiling as an evaluative tool of fenofibrate-induced toxicology in Fischer 344 male rats. Toxicologic Pathology, 37(4), 521–535.

    Article  CAS  PubMed  Google Scholar 

  • Petriz, B. A., & Franco, O. L. (2017). Metaproteomics as a complementary approach to gut microbiota in health and disease. Frontiers in Chemistry, 5, 4. doi:10.3389/fchem.2017.00004.

    Article  PubMed  PubMed Central  Google Scholar 

  • Piraner, D. I., Abedi, M. H., Moser, B. A., Lee-Gosselin, A., & Shapiro, M. G. (2016). Tunable thermal bioswitches for in vivo control of microbial therapeutics. Nature Chemical Biology. doi:10.1038/nchembio.2233.

    PubMed  Google Scholar 

  • Qi, Y., Jiang, C., Cheng, J., Krausz, K. W., Li, T., Ferrell, J. M., et al. (2015). Bile acid signaling in lipid metabolism: Metabolomic and lipidomic analysis of lipid and bile acid markers linked to anti-obesity and anti-diabetes in mice. Biochimica et Biophysica Acta, 1851(1), 19–29.

    Article  CAS  PubMed  Google Scholar 

  • Ramezani, A., Massy, Z. A., Meijers, B., Evenepoel, P., Vanholder, R., & Raj, D. S. (2016). Role of the gut microbiome in uremia: A potential therapeutic target. American Journal of Kidney Diseases: The Official Journal of the National Kidney Foundation, 67(3), 483–498.

    Article  CAS  Google Scholar 

  • Ríos-Covián, D., Ruas-Madiedo, P., Margolles, A., Gueimonde, M., de Los Reyes-Gavilán, C. G., & Salazar, N. (2016). Intestinal short chain fatty acids and their link with diet and human health. Frontiers in Microbiology, 7, 185.

    Article  PubMed  PubMed Central  Google Scholar 

  • Saad, M. J., Santos, A., & Prada, P. O. (2016). Linking gut microbiota and inflammation to obesity and insulin resistance. Physiology (Bethesda), 31(4), 283–293.

    CAS  Google Scholar 

  • Sánchez, B., Delgado, S., Blanco-Míguez, A., Lourenço, A., & Gueimonde, M., Margolles, A. (2016). Probiotics, gut microbiota, and their influence on host health and disease. Molecular Nutrition & Food Research. doi:10.1002/mnfr.201600240.

    Google Scholar 

  • Sarosiek, K., Pappan, K. L., Gandhi, A. V., Saxena, S., Kang, C. Y., & McMahon, H. (2016). Conserved Metabolic changes in nondiabetic and type 2 diabetic bariatric surgery patients: Global metabolomic pilot study. Journal of Diabetes Research. doi:10.1155/2016/3467403.

    PubMed  PubMed Central  Google Scholar 

  • Sharon, G., Sampson, T. R., Geschwind, D. H., & Mazmanian, S. K. (2016). The central nervous system and the gut microbiome. Cell, 167(4), 915–932.

    Article  CAS  PubMed  Google Scholar 

  • Shrestha, A., Müllner, E., Poutanen, K., Mykkänen, H., & Moazzami, A. A. (2015). Metabolic changes in serum metabolome in response to a meal. European Journal of Nutrition, 56(2), 671–681.

    Article  PubMed  Google Scholar 

  • Tang, W. H., Wang, Z., Levison, B. S., Koeth, R. A., Britt, E. B., Hazen, S. L., et al. (2013). Intestinal microbial metabolism of phosphatidylcholine and cardiovascular risk. The New England Journal of Medicine, 368(17), 1575–1584.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Turnbaugh, P. J., Ridaura, V. K., Faith, J. J., Rey, F. E., Knight, R., & Gordon, J. I. (2009). The effect of diet on the human gut microbiome: A metagenomic analysis in humanized gnotobiotic mice. Science Translational Medicine, 1(6), 6ra14. doi:10.1126/scitranslmed.3000322.

    Article  PubMed  PubMed Central  Google Scholar 

  • Walker, A., Pfitzner, B., Neschen, S., Kahle, M., Harir, M., Lucio, M., et al. (2014). Distinct signatures of host–microbial meta-metabolome and gut microbiome in two C57BL/6 strains under high-fat diet. ISME Journal, 8(12), 2380–2396.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Walrand, S., Chiotelli, E., Noirt, F., Mwewa, S., & Lassel, T. (2008). Consumption of a functional fermented milk containing collagen hydrolysate improves the concentration of collagen-specific amino acids in plasma. Journal of Agricultural and Food Chemistry, 56(17), 7790–7795.

    Article  CAS  PubMed  Google Scholar 

  • Wang, L., Conlon, M. A., Christophersen, C. T., Sorich, M. J., & Angley, M. T. (2014). Gastrointestinal microbiota and metabolite biomarkers in children with autism spectrum disorders. Biomarkers in Medicine, 8(3), 331–344.

    Article  PubMed  Google Scholar 

  • Wang, Z., Roberts, A. B., Buffa, J. A., Levison, B. S., Zhu, W., Hazen, S. L., et al. (2015). Non-lethal inhibition of gut microbial trimethylamine production for the treatment of atherosclerosis. Cell, 163(7), 1585–1595.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Westin, M. A., Hunt, M. C., & Alexson, S. E. (2005). The identification of a succinyl-CoA thioesterase suggests a novel pathway for succinate production in peroxisomes. The Journal of Biological Chemistry, 280(46), 38125–38132.

    Article  CAS  PubMed  Google Scholar 

  • Winek, K., Dirnagl, U., & Meisel, A. (2016). The gut microbiome as therapeutic target in central nervous system diseases: Implications for stroke. Neurotherapeutics, 13(4), 762–774.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Woo, T. D., Oka, K., Takahashi, M., Hojo, F., Osaki, T., Hanawa, T., et al. (2011). Inhibition of the cytotoxic effect of Clostridium difficile in vitro by Clostridium butyricum MIYAIRI 588 strain. Journal of Medical Microbiology, 60(Pt 11), 1617–1625.

    Article  CAS  PubMed  Google Scholar 

  • Xia, J., & Wishart, D. S. (2016), Using MetaboAnalyst 3.0 for comprehensive metabolomics data analysis. Current Protocols in Bioinformatics, 55, 14.10.1–14.10.91.

    Article  Google Scholar 

  • Yamashita, T., Emoto, T., Sasaki, N., & Hirata, K. I. (2016). Gut microbiota and coronary artery disease. International Heart Journal, 57(6), 663–671.

    Article  PubMed  Google Scholar 

  • Yano, J. M., Yu, K., Donaldson, G. P., Shastri, G. G., Ann, P., Ma, L., et al. (2015). Indigenous bacteria from the gut microbiota regulate host serotonin biosynthesis. Cell, 161(2), 264–276.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoshida, Y., Umeno, A., Akazawa, Y., Shichiri, M., Murotomi, K., & Horie, M. (2015). Chemistry of lipid peroxidation products and their use as biomarkers in early detection of diseases. Journal of Oleo Science, 64(4), 347–356.

    Article  CAS  PubMed  Google Scholar 

  • Zeidan, Y. H., & Hannun, Y. A. (2007). Translational aspects of sphingolipid metabolism. Trends in Molecular Medicine, 13(8), 27–36.

    Article  Google Scholar 

  • Zhang, J., Light, A. R., Hoppel, C. L., Campbell, C., Chandler, C. J., & Burnett, D. J. (2017). Acylcarnitines as markers of exercise-associated fuel partitioning, xenometabolism, and potential signals to muscle afferent neurons. Experimental Physiology, 102(1), 48–69.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroyuki Kobayashi.

Ethics declarations

Conflict of interest

‘Takeo Moriya, Yoshinori Satomi, Shumpei Murata, Hiroshi Sawada, and Hiroyuki Kobayashi’ declare that they have no conflict of interest.

Ethical approval

All animal studies were performed in accordance with the Institute of Laboratory Animal Resources guidelines and approved by the Institutional Animal Care and Use Committees (IACUC) of Sankyo-labo Service Co.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 512 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moriya, T., Satomi, Y., Murata, S. et al. Effect of gut microbiota on host whole metabolome. Metabolomics 13, 101 (2017). https://doi.org/10.1007/s11306-017-1240-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11306-017-1240-9

Keywords

Navigation