Skip to main content
Log in

S-genotype identification, genetic diversity and structure analysis of Italian sweet cherry germplasm

  • Original Article
  • Published:
Tree Genetics & Genomes Aims and scope Submit manuscript

Abstract

In this study, 186 local sweet cherry accessions from 12 Italian regions, plus eight reference accessions, were analysed for the first time, using 13 microsatellite markers. Moreover, their S-incompatibility genotypes were identified with consensus primers for the S-RNase and SFB genes. A total of 161 unique genotypes were found; 18 groups of synonyms, along with the discovery of cases of misidentification. The average number of alleles per locus was 9.7, the mean expected heterozygosity (He) was 0.63, the mean observed heterozygosity (Ho) was 0.65 and the mean polymorphic information content (PIC) was 0.58. The structure analysis revealed the presence of six populations, which reflected in some cases geographical areas, the exchange of material among regions and introduction of material from abroad. A total of 17 different S-alleles were found, combined in 24 incompatibility groups of the 47 reported so far. Furthermore, 10 new incompatibility groups, from XLVII to LVI, were identified. Seven genotypes with unique S-allele combinations were included in the pollen donor group 0. The mutant allele of the pollen SFB 5 ′ was found in early ripening genotypes from Sicily and Sardinia. The variability of SSRs present in both introns of the allele S 13 was also explored; new combinations of variants were found and some accessions presented SSR variants typical of wild cherry. It is evident that the Italian sweet cherry germplasm collection represents a relevant source of genetic diversity that needs to be preserved for future breeding programmes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Albertini A, Della Strada G (1996) Monografia di Cultivar di Ciliegio Dolce. MiRAAF-ISF, Rome

  • Aranzana MJ, García-Mas J, Carbó J, Arús P (2002) Development and variability analysis of microsatellite markers in peach. Plant Breed 121:87–92. doi:10.1046/j.1439-0523.2002.00656.x

    Article  CAS  Google Scholar 

  • Baldini E (1973) Indagine sulle cultivar di ciliegio diffuse in Italia. Istituto di Coltivazioni Arboree, Bologna

    Google Scholar 

  • Bargioni G (1970) “Vittoria” Nuova cultivar di ciliegio dolce (incrocio Bargioni “Moretta di Cazzano” x “Durona di Padova”, 3/16). Riv Ortoflorofrutt Ital 6:3–12

    Google Scholar 

  • Basso M, Natali S (1959) Contributo allo studio delle cultivar di ciliegio della provincia di Pisa. Riv Ortoflorofrutt Ital 11:508–540

    Google Scholar 

  • Bekefi ZS, Tobutt KR, Sonneveld T (2003) Determination of (in)compatibility genotypes of Hungarian sweet cherry (Prunus avium L.) accessions by PCR based methods. Int J Hortic Sci 9:37–42

    Google Scholar 

  • Boritzki M, Plieske J, Struss D (2000) Cultivar identification in sweet cherry (Prunus avium L.) using AFLP and microsatellite markers. Acta Hortic 2:505–510

  • Bošković R, Tobutt KR (1996) Correlation of stylar ribonuclease zymograms with incompatibility alleles in sweet cherry. Euphytica 90:245–250

    Article  Google Scholar 

  • Bošković R, Tobutt KR (2001) Genotyping cherry cultivars assigned to incompatibility groups, by analysing stylar ribonucleases. Theor Appl Genet 103:475–485. doi:10.1007/PL00002906

    Article  Google Scholar 

  • Bošković R, Russell K, Tobutt KR (1997) Inheritance of stylar ribonucleases in cherry progenies, and reassignment of incompatibility alleles to two incompatibility groups. Euphytica 95:221–228

    Article  Google Scholar 

  • Brooks RM, Olmo HP (1972) Register of new fruits and nut varieties, 2nd edn. University of California Press, Berkeley

    Google Scholar 

  • Cachi AM, Wünsch A (2014) S-genotyping of sweet cherry varieties from Spain and S-locus diversity in Europe. Euphytica 197:229–236. doi:10.1007/s10681-014-1061-0

    Article  CAS  Google Scholar 

  • Campoy JA, Lerigoleur-Balsemin E, Christmann H, Beauvieux R, Girollet N, Quero-García J, Dirlewanger E, Barreneche T (2016) Genetic diversity, linkage disequilibrium, population structure and construction of a core collection of Prunus avium L. landraces and bred cultivars. BMC Plant Biol 16(49). doi:10.1186/s12870-016-0712-9

  • Clarke JB, Tobutt KR (2003) Development and characterization of polymorphic microsatellites from Prunus avium ‘Napoleon’. Mol Ecol Notes 3:578–580. doi:10.1046/j.1471-8286.2003.00517.x

    Article  CAS  Google Scholar 

  • Clarke JB, Tobutt KR (2009) A standard set of accessions, microsatellites and genotypes for harmonising the fingerprinting of cherry collections for the ECPGR. Acta Hortic 814:615–618

    Article  Google Scholar 

  • Clarke JB, Sargent DJ, Bošković RI, Belaj A, Tobutt KR (2009) A cherry map from the inter-specific cross Prunus avium ‘Napoleon’ × P. nipponica based on microsatellite, gene-specific and isoenzyme markers. Tree Genet Genomes 5:41–51. doi:10.1007/s11295-008-0166-9

    Article  Google Scholar 

  • CNR (1988) Elenco delle cultivar autoctone italiane. In: Fiorino P, Mariotti P (eds). Consiglio nazionale delle ricerche/Istituto sulla propagazione delle specie legnose (CNR/IPSL), Firenze

  • CNR (1994) Elenco delle cultivar di fruttiferi reperite in Italia. In: Delfino C (ed). Consiglio Nazionale delle Ricerche, Sassari

  • De Cuyper B, Sonneveld T, Tobutt KR (2005) Determining self-incompatibility genotypes in Belgian wild cherries. Mol Ecol 14:945–955. doi:10.1111/j.1365-294X.2005.02460.x

    Article  PubMed  Google Scholar 

  • De Rogatis A, Ferrazzini D, Ducci F, Guerri S, Carnevale S, Belletti P (2013) Genetic variation in Italian wild cherry (Prunus avium L.) as characterized by nSSR markers. Forestry 86:391–400. doi:10.1093/forestry/cpt009

    Article  Google Scholar 

  • Di Vaio C, Villano C, Marallo N (2015) Molecular analysis of native cultivars of sweet cherry in Southern Italy. Hortic Sci Prague 42:114–118. doi:10.17221/352/2014-HORTSCI

    Article  Google Scholar 

  • Dirlewanger E, Cosson P, Tavaud M, Aranzana MJ, Poizat C, Zanetto A, Arús P, Laigret F (2002) Development of microsatellite markers in peach [Prunus persica (L.) Batsch] and their use in genetic diversity analysis in peach and sweet cherry (Prunus avium L.) Theor Appl Genet 105:127–138. doi:10.1007/s00122–002–0867-7

    Article  CAS  PubMed  Google Scholar 

  • Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull 19:11–15

    Google Scholar 

  • Earl DA, Vonholdt BM (2012) STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resour 4:359–361. doi:10.1007/s12686-011-9548-7

    Article  Google Scholar 

  • Ercisli S, Radunic M, Gadze J, Ipek A, Skaljac M, Cmelik Z (2012) S-RNase based S-genotyping of Croatian sweet cherry (Prunus avium L) genotypes. Sci Hortic Amsterdam 139:21–24. doi:10.1016/j.scienta.2012.02.041

    Article  CAS  Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620. doi:10.1111/j.1365-294X.2005.02553.x

    Article  CAS  PubMed  Google Scholar 

  • Falush D, Stephens M, Pritchard JK (2003) Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics 164:1567–1587

    CAS  PubMed  PubMed Central  Google Scholar 

  • Falush D, Stephens M, Pritchard JK (2007) Inference of population structure using multilocus genotype data: dominant markers and null allele. Mol Ecol Notes 7:574–578. doi:10.1111/j.1471-8286.2007.01758.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frei A, Szalatnay D, Zollinger T, Frey J (2010) Molecular characterisation of the national collection of Swiss cherry cultivars. J Hortic Sci Biotechnol 85:277–282. doi:10.1080/14620316.2010.11512668

    Article  Google Scholar 

  • Giovannini D, Engel P (2006) Status of Prunus collection in Italy. In: Report of a working group on Prunus, VI Meeting, 20–21 June 2003, Budapest, Hungary/VII meeting, 1–3 December 2005, Larnaca, Cyprus. Biodiversity International, Rome, Italy, 61–65

  • Giovannini D, Leone A, Liverani A, Sirri S, Tellarini S (2013) Studi di caratterizzazione molecolare di vecchie varietà di ciliegio della tradizione romagnola. Frutticoltura 4:62–65

    Google Scholar 

  • Gisbert AD, Badenes ML, Tobutt KR, Llacer G, Romero C (2008) Determination of the S-allele composition of sweet cherry (Prunus avium L.) cultivars grown in the southeast of Spain by PCR analysis. J Hortic Sci Biotechnol 83:246–252. doi:10.1080/14620316.2008.11512376

    Article  CAS  Google Scholar 

  • Grassi F, Morico G, Della Strada G (1996) Status of Prunus collections in Italy. In: Report of the working group of Prunus. Fifth Meeting, 1–3 February 1996, Menemen-Izmir. IPGRI, Rome Italy, pp 32–34

  • Hubisz MJ, Falush D, Stephens M, Pritchard JK (2009) Inferring weak population structure with the assistance of sample group information. Mol Ecol Resour 9:1322–1332. doi:10.1111/j.1755-0998.2009.02591.x

    Article  PubMed  PubMed Central  Google Scholar 

  • Ipek A, Gulen H, Akcay ME, Ipek M, Ergin S, Eris A (2011) Determination of self-incompatibility groups of sweet cherry genotypes from Turkey. Genet Mol Res 10:253–260

    Article  CAS  PubMed  Google Scholar 

  • Jung JW, Jo YS (2012) A preliminary study of genetic structure and relatedness analysis of Nutria (Myocastor coypus) in Upo Wetland. J Species Res 1:100–103. doi:10.12651/JSR.2012.1.1.100

    Article  Google Scholar 

  • Kalinowski ST, Taper ML, Marshall TC (2007) Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment. Mol Ecol 16:1099–1106. doi:10.1111/j.1365-294X.2007.03089.x

    Article  PubMed  Google Scholar 

  • Kato S, Mukai Y (2004) Allelic diversity of S-RNase at the self-incompatibility locus in natural flowering cherry populations (Prunus lannesiana var. speciosa). Heredity 92:249–256. doi:10.1038/sj.hdy.6800403

    Article  CAS  PubMed  Google Scholar 

  • Lacis G, Kaufmane E, Rashal I, Trajkovski V, Iezzoni AF (2008) Identification of self-incompatibility (S) alleles in Latvian and Swedish sweet cherry genetic resources collections by PCR based typing. Euphytica 160:155–163. doi:10.1007/s10681-007-9496-1

    Article  CAS  Google Scholar 

  • Lacis G, Isaak R, Silvija R, Vikto T, Lezzoni AF (2009) Assessment of genetic diversity of Latvian and Swedish sweet cherry (Prunus avium L) genetic resources collections by using SSR (microsatellite) markers. Sci Hortic 121:451–457. doi:10.1016/jscienta200903016

    Article  CAS  Google Scholar 

  • Lisek A, Rozpara E, Głowacka A, Kucharska D, Zawadzka M (2015) Identification of S-genotypes of sweet cherry cultivars from Central and Eastern Europe. Hortic Sci Prague 42:13–21. doi:10.17221/103/2014-HORTSC

    Article  CAS  Google Scholar 

  • Liu K, Muse SV (2005) PowerMarker: integrated analysis environment for genetic marker data. Bioinformatics 21:2128–2129. doi:10.1093/bioinformatics/bti282

    Article  CAS  PubMed  Google Scholar 

  • Marchese A, Bošković R, Caruso T, Raimondo A, Cutuli M, Tobutt KR (2007a) A new self-compatibility haplotype in the sweet cherry ‘Kronio’, S 5 ', attributable to a pollen-part mutation in the SFB gene. J Exp Bot 58:4347–4356. doi:10.1093/jxb/erm322

    Article  CAS  PubMed  Google Scholar 

  • Marchese A, Tobutt KR, Raimondo A, Motisi A, Bošković RI, Clarke J, Caruso T (2007b) Morphological characteristics, microsatellite fingerprinting and determination of incompatibility genotypes of Sicilian sweet cherry cultivars. J Hortic Sci Biotechnol 82:41–48. doi:10.1080/14620316.2007.11512197

    Article  CAS  Google Scholar 

  • Marchese A, Bošković R, Caruso T, Tobutt KR (2010) Intra-allelic variation of the S 13 -RNase allele distinguishes sweet, wild and sour cherry. Tree Genet Genomes 6:963–972. doi:10.1007/s11295-010-0305-y

    Article  Google Scholar 

  • Marchese A, Marra FP, Priolo D, Caruso T, Giovannini D, Leone A, Mafrica R, Pangallo S, Palasciano M, De Salvador FR (2017) Identification of (in)compatible S-genotypes and molecular characterisation of Italian sweet cherry cultivars. Acta Hortic 1161:41–46. doi:10.17660/ActaHortic.2017.1161.6

    Article  Google Scholar 

  • Mariette S, Tavaud M, ArunyawatU CG, Millan M, Salin F (2010) Population structure and genetic bottleneck in sweet cherry estimated with SSRs and the gametophytic self-incompatibility locus. BMC Genet 11:77 http://wwwbiomedcentralcom/1471-2156/11/77

    Article  PubMed  PubMed Central  Google Scholar 

  • Marra FP, Caruso T, Costa F, Di Vaio C, Mafrica R, Marchese A (2013) Genetic relationships, structure and parentage simulation among the olive tree (Olea europaea L. subsp. europaea) cultivated in Southern Italy revealed by SSR markers. Tree Genet Genomes 9:961–973. doi:10.1007/s11295-013-0609-9

  • Marshall TC, Slate J, Kruuk LEB, Pemberton JM (1998) Statistical confidence for likelihood-based paternity inference in natural populations. Mol Ecol 7:639–655. doi:10.1046/j.1365-294x.1998.00374.x

    Article  CAS  PubMed  Google Scholar 

  • Matthews P, Dow KP (1969) Incompatibility groups: sweet cherry (Prunus avium). In: Knight RL (ed) Abstract bibliography of fruit breeding and genetics to 1965, Prunus. Commonwealth Agricultural Bureaux, Farnham Royal, pp 540–544

    Google Scholar 

  • Meagher TR (1986) Analysis of paternity within a natural population of Chamaelirium luteum. I. Identification of most-likely male parents. Am Nat 128:199–215

    Article  Google Scholar 

  • Nei M (1973) Analysis of gene diversity in subdivided populations. Proc Natl Acad Sci U S A 70:3321–3323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Olmstead JW, Sebolt AM, Cabrera A, Sooriyapathirana SS, Hammar S, Iriarte G, Wang D, Chen CY, van der Knaap E, Iezzoni AF (2008) Construction of an intra-specific sweet cherry (Prunus avium L.) genetic linkage map and synteny analysis with the Prunus reference map. Tree Genet Genomes 4:897–910. doi:10.1007/s11295-008-0161-1

    Article  Google Scholar 

  • Palasciano MA, Fanizza G, Resta P (2009) Le varietà locali non sono sempre autoctone: l'esempio della ciliegia Ferrovia (Prunus avium L.) Ital J Agron 4:699–704

    Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    CAS  PubMed  PubMed Central  Google Scholar 

  • Regione Piemonte (2008) Antiche cultivar di ciliegio in Piemonte http://www.regione.piemonte.it/agri/area_tecnico_scientifica/biodiversita/dwd/ciliegio_bassa_risoluzione.pdf

  • Roselli G, Mariotti P (1999) Il germoplasma del ciliegio nella Provincia di Pisa. In: ARSIA (ed). Consiglio Nazionale delle Ricerche, Firenze

  • Roselli G, Benelli G, Morelli D (1983) Due selezioni di ciliegio dolce per la raccolta integralmente meccanizzata. L’informatore Agrario 1:57–58

    Google Scholar 

  • Rosenberg NA, Pritchard JK, Weber JL, Cann HM, Kidd KK, Zhivotovsky LA, Feldman MW (2002) Genetic structure of human populations. Science 298:2381–2385. doi:10.1126/science.1078311

    Article  CAS  PubMed  Google Scholar 

  • Schueler S, Tusch A, Schuster M, Ziegenhagen B (2003) Characterization of microsatellites in wild and sweet cherry (Prunus avium L)—markers for individual identification and reproductive processes. Genome 46:95–102. doi:10.1139/g02-107

    Article  CAS  PubMed  Google Scholar 

  • Schuster M (2012) Incompatible (S-) genotypes of sweet cherry cultivars (Prunus avium L.) Sci Hortic 148:59–73. doi:10.1016/j.scienta.2012.09.012

    Article  Google Scholar 

  • Schuster M, Flachowsky H, Kohler D (2007) Determination of self-incompatible genotypes in sweet cherry (P. avium L.) accessions and cultivars of the German Fruit Gene Bank and from private collections. Plant Breed 126:533–540. doi:10.1111/j.1439-0523.2007.01401.x

    Article  CAS  Google Scholar 

  • Sonneveld T, Tobutt KR, Robbins TP (2003) Allele-specific PCR detection of sweet cherry self-incompatibility (S) alleles S 1 to S 16 using consensus and allele-specific primers. Theor Appl Genet 107:1059–1070. doi:10.1007/s00122-003-1274-4

    Article  CAS  PubMed  Google Scholar 

  • Sonneveld T, Robbins TP, Tobutt KR (2006) Improved discrimination of self-incompatibility S-RNase alleles in cherry and high throughput genotyping by automated sizing of first intron polymerase chain reaction products. Plant Breed 125:305–307. doi:10.1111/j.1439-0523.2006.01205.x

    Article  CAS  Google Scholar 

  • Stanys V, Baniulis D, Morkunaite-Haimi S, Siksnianiene JB, Frercks B, Gelvonauskiene D, Stepulaitiene I, Staniene G, Siksnianas T (2012) Characterising the genetic diversity of Lithuanian sweet cherry (Prunus avium L.) cultivars using SSR markers. Sci Hortic-Amsterdam 142:136–142

    Article  Google Scholar 

  • Struss D, Ahmad R, Southwick SM (2003) Analysis of sweet cherry (Prunus avium L) cultivars using SSR and AFLP markers. J Am Soc Hortic Sci 128:904–909

    CAS  Google Scholar 

  • Szikriszt B, Doğan A, Ercisli S, Akcay ME, Hegedűs A, Halász J (2013) Molecular typing of the self-incompatibility locus of Turkish sweet cherry genotypes reflects phylogenetic relationships among cherries and other Prunus species. Theor Appl Genet 9:155–165. doi:10.1007/s11295-012-0543-2

    Google Scholar 

  • Tao R, Yamane H, Sugiura A, Murayama H, Sassa H, Mori H (1999) Molecular typing of S-alleles through identification, characterisation and cDNA cloning for S-RNases in sweet cherry. J Am Soc Hortic Sci 124:224–233

    CAS  Google Scholar 

  • Testolin R, Marrazzo T, Cipriani G, Quarta R, Verde I, Dettori MT, Pancaldi M, Sansavini S (2000) Microsatellite DNA in peach (Prunus persica L. Batsch) and its use in fingerprinting and testing the genetic origin of cultivars. Genome 43:512–520. doi:10.1139/g00-010

    Article  CAS  PubMed  Google Scholar 

  • Thompson EA (1975) The estimation of pairwise relationships. Ann Hum Genet 39:173–188

    Article  CAS  PubMed  Google Scholar 

  • Thompson EA (1976) Inference of genealogical structure. Soc Sci Inf 15:477–526

    Article  Google Scholar 

  • Tobutt KR, Sonneveld T, Bekefi Z, Bošković R (2004) Cherry(in)compatibility genotypes—an updated cultivar table. Acta Hortic 663:667–671

    Article  Google Scholar 

  • Vaughan SP, Russell K (2004) Characterization of novel microsatellites and development of multiplex PCR for large-scale population studies in wild cherry, Prunus avium. Mol Ecol Notes 4:429–431. doi:10.1111/j.1471-8286.2004.00673.x

    Article  CAS  Google Scholar 

  • Vaughan SP, Russell K, Sargent DJ, Tobutt KR (2006) Isolation of S-locus F-box alleles in Prunus avium and their application in a novel method to determine self-incompatibility genotype. Theor Appl Genet 112:856–866. doi:10.1007/s00122-005-0187-9

    Article  CAS  PubMed  Google Scholar 

  • Vaughan SP, Cottrell JE, Moodley DJ, Connolly T, Russel K (2007) Clonal structure and recruitment in British wild cherry (Prunus avium L). For Ecol Manag 242:419–430. doi:10.1016/j.foreco.2007.01.059

    Article  Google Scholar 

  • Vaughan SP, Boskovic RI, Gisbert-Climent A, Russel K, Tobutt KR (2008) Characterisation of novel S-alleles from cherry (Prunus avium L). Tree Genet Genomes 4:531–541. doi:10.1007/s11295-007-0129-6

    Article  Google Scholar 

  • Wunsch A, Hormaza JI (2004) Molecular evaluation of genetic diversity and S-allele composition of local Spanish sweet cherry (Prunus avium L) cultivars. Genet Resour Crop Evol 51:635–641. doi:10.1023/B:GRES00000246490668143

    Article  Google Scholar 

  • Yamane H, Ikeda K, Ushijima K, Sassa H, Tao R (2003) A pollen-expressed gene for a novel protein with an F-box motif that is very tightly linked to a gene for S-RNase in two species of cherry, Prunus cerasus and P. avium. Plant Cell Physiol 44:764–769. doi:10.1093/pcp/pcg088

    Article  CAS  PubMed  Google Scholar 

  • Zohary D, Hopf M (2000) Fruit trees and nuts domestication of plants in the Old World. The origin and spread of cultivated plants in West Asia, Europe and the Nile Valley, 3rd edn. Oxford University Press, New York

Download references

Acknowledgments

We thank Dr. Daniel J. Sargent and the PhD student Bipin Balan for helpful comments and for the English revision.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Marchese.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Data archiving statement

Sweet cherry SSR data are available in the Genome Database for Rosaceae.

Additional information

Communicated by E. Dirlewanger

Electronic supplementary material

Supplementary Figure S1

UPGMA dendrogram depicting genetic relationships among 186 Italian sweet cherry accessions, from 12 regions, based on 13 SSRs and the S-locus. (JPEG 512 kb)

Supplementary Figure S2

Most likely number of groups in the structure analysis resulted from the log likelihood related with each K-value calculated by using the ∆K method developed by Evanno et al. (2005). (JPEG 285 kb)

Table S1

(XLS 282 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marchese, A., Giovannini, D., Leone, A. et al. S-genotype identification, genetic diversity and structure analysis of Italian sweet cherry germplasm. Tree Genetics & Genomes 13, 93 (2017). https://doi.org/10.1007/s11295-017-1176-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11295-017-1176-2

Keywords

Navigation