Skip to main content

Advertisement

Log in

Cell Free Massive MIMO with Limited Capacity Fronthaul

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Massive MIMO has shown to be a promising candidate for the next generation of mobile communications 5G. Cell free massive MIMO is an implementation in which antennas are distributed throughout the coverage area and the whole area is considered as a single cell. Despite increasing spectral efficiency, cell free massive MIMO has some practical challenges. One challenge is the limited capacity of fronthaul links connecting antennas to the central unit. In this paper, the problem of power weight allocation for a cell free massive MIMO with limited capacity fronthaul links is formulated and solved. The precoded signals for all of the distributed antennas are calculated at the central unit. These signals are then compressed and sent through the limited capacity links to the antennas. Several scenarios are explored, including joint power weight allocation and compression, separate power weight allocation and compression, and no compression. Results show that for limited capacity fronthaul, including compression effect rather than ignoring it, can enhance the performance of power weight allocation considerably.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. Typical values are used here, namely system bandwidth is used to meet LTE specifications [28] and the receive noise figure is a typical for a practical receiver [29].

References

  1. Tarokh, V., Seshadri, N., & Calderbank, A. R. (1998). Space-time codes for high data rate wireless communication: Performance criterion and code construction. IEEE Transactions on Information Theory, 44(2), 744–765.

    Article  MathSciNet  MATH  Google Scholar 

  2. Alamouti, S. M. (1998). A simple transmit diversity technique for wireless communications. IEEE Journal on Selected Areas in Communications, 16(8), 1451–1458.

    Article  Google Scholar 

  3. Wolniansky, P. W., Foschini, G. J., Golden, G. D., & Valenzuela, R. A. (1998). V-BLAST: An architecture for realizing very high data rates over the rich-scattering wireless channel. In URSI international symposium on signals, systems, and electronics, Pisa (pp. 295–300).

  4. Lu, L., Li, G. Y., Swindlehurst, A. L., Ashikhmin, A., & Zhang, R. (2014). An overview of massive MIMO: Benefits and challenges. IEEE Journal of Selected Topics in Signal Processing, 8(5), 742–758.

    Article  Google Scholar 

  5. Van Veen, B. D., & Buckley, K. M. (1998). Beamforming: A versatile approach to spatial filtering. IEEE ASSP Magazine, 5(2), 4–24.

    Article  Google Scholar 

  6. Wang, H., Li, L., Wang, J., Song, L., Ma, Y., & Zhou, Z. (2011). A transmit precoding scheme for downlink multiuser MIMO systems. In Vehicular technology conference (VTC Fall), San Francisco, CA (pp. 1–5).

  7. Marzetta, T. L. (2010). Noncooperative cellular wireless with unlimited numbers of base station antennas. IEEE Transactions on Wireless Communications, 9(11), 3590–3600.

    Article  Google Scholar 

  8. Zarei, S., Gerstacker, W., & Schober, R. (2015). Low-complexity widely-linear precoding for downlink large-scale MU-MISO systems. IEEE Communications Letters, 19(4), 665–668.

    Article  Google Scholar 

  9. Rusek, F., et al. (2013). Scaling up MIMO: Opportunities and challenges with very large arrays. IEEE Signal Processing Magazine, 30(1), 40–60.

    Article  Google Scholar 

  10. Wang, C. X., et al. (2014). Cellular architecture and key technologies for 5G wireless communication networks. IEEE Communications Magazine, 52(2), 122–130.

    Article  Google Scholar 

  11. Jungnickel, V., et al. (2014). The role of small cells, coordinated multipoint, and massive MIMO in 5G. IEEE Communications Magazine, 52(5), 44–51.

    Article  Google Scholar 

  12. Alnajjar, K. A., Smith, P. J., & Woodward, G. K. (2015). Co-located and distributed antenna systems: Deployment options for massive multiple-input multiple-output. IET Microwaves, Antennas & Propagation, 9(13), 1418–1424.

    Article  Google Scholar 

  13. Liu, Z., & Dai, L. (2014). A comparative study of downlink MIMO cellular networks with co-located and distributed base-station antennas. IEEE Transactions on Wireless Communications, 13(11), 6259–6274.

    Article  Google Scholar 

  14. Choi, W., & Andrews, J. G. (2007). Downlink performance and capacity of distributed antenna systems in a multicell environment. IEEE Transactions on Wireless Communications, 6(1), 69–73.

    Article  Google Scholar 

  15. Heath, R., Peters, S., Wang, Y., & Zhang, J. (2013). A current perspective on distributed antenna systems for the downlink of cellular systems. IEEE Communications Magazine, 51(4), 161–167.

    Article  Google Scholar 

  16. Ngo, H. Q., Ashikhmin, A., Yang, H., Larsson, E. G., & Marzetta, T. L. (2015). Cell-free massive MIMO: Uniformly great service for everyone. In 2015 IEEE 16th international workshop on signal processing advances in wireless communications (SPAWC), Stockholm (pp. 201–205.)

  17. Ngo, H. Q., Ashikhmin, A., Yang, H., Larsson, E. G., & Marzetta, T. L. (2017). Cell-free massive MIMO versus small cells. IEEE Transactions on Wireless Communications, 16(3), 1834–1850.

    Article  Google Scholar 

  18. Sadeghi, M., Yuen, C., & Chew, Y. H. (2014). Sum rate maximization for uplink distributed massive MIMO systems with limited backhaul capacity. In 2014 IEEE Globecom workshops (GC Wkshps), Austin, TX (pp. 308–313).

  19. Xu, G., Liu, A., Jiang, W., Xiang, H., & Luo, W. (2014). Joint user scheduling and antenna selection in distributed massive MIMO systems with limited backhaul capacity. China Communications, 11(5), 17–30.

    Article  Google Scholar 

  20. Zhang, F., Huang, Y., Jin, S., Jiang, L., & Wang, G. (2015). Reduced-backhaul coordinated beamforming for massive MIMO heterogeneous networks. In IEEE wireless communications and networking conference (WCNC), New Orleans, LA (pp. 129–134).

  21. Kang, J., Simeone, O., Kang, J., & Shamai, S. (2016). Fronthaul compression and precoding design for C-RANs over ergodic fading channels. IEEE Transactions on Vehicular Technologies, 65(7), 5022–5032.

    Article  Google Scholar 

  22. Elijah, O., Leow, C. Y., Rahman, T. A., Nunoo, S., & Iliya, S. Z. (2016). A comprehensive survey of pilot contamination in massive MIMO5G system. IEEE Communications Surveys & Tutorials, 18(2), 905–923.

    Article  Google Scholar 

  23. Nayebi, E., Ashikhmin, A., Marzetta, T. L., & Yang, H. (2015). Cell-free massive MIMO systems. In 49th Asilomar conference on signals, systems and computers, Pacific Grove, CA (pp. 695–699).

  24. Nayebi, E., Ashikhmin, A., Marzetta, T. L., Yang, H., & Rao, B. D. (2017). Precoding and power optimization in cell-free massive MIMO systems. IEEE Transactions on Wireless Communications, 16(7), 4445–4459.

    Article  Google Scholar 

  25. Hassibi, B., & Hochwald, B. M. (2003). How much training is needed in multiple-antenna wireless links? IEEE Transactions on Information Theory, 49(4), 951–963.

    Article  MATH  Google Scholar 

  26. Boyd, S., & Vandenberghe, L. (2004). Convex optimization. Cambridge: Cambridge University Press.

    Book  MATH  Google Scholar 

  27. Gersho, A., & Gray, R. M. (1992). Vector quantization II. Vector quantization and signal compression (pp. 355–372). New York: Springer.

    Book  MATH  Google Scholar 

  28. http://www.3gpp.org/technologies/keywords-acronyms/98-lte. Accessed 22 Jan 2018.

  29. Proakis, J. G., & Salehi, M. (Eds.) (2002). Effect of noise on analog communication systems. In Communication systems engineering (p. 256). Upper Saddle River, NJ: Prentice Hall.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aliazam Abbasfar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boroujerdi, M.N., Abbasfar, A. & Ghanbari, M. Cell Free Massive MIMO with Limited Capacity Fronthaul. Wireless Pers Commun 104, 633–648 (2019). https://doi.org/10.1007/s11277-018-6038-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-018-6038-1

Keywords

Navigation