Skip to main content

Advertisement

Log in

Dynamic energy-efficient resource allocation in wireless powered communication network

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

In this paper, we investigate the dynamic energy-efficient resource allocation and analyze delay in newly emerging wireless powered communication network (WPCN). Considering the time-varying channel and stochastic data arrivals, we formulate the resource allocation (i.e., time allocation and power control) problem as a dynamic stochastic optimization model, which maximizes the system energy efficiency (EE) subject to both the data queue stability and the harvested energy availability, and simultaneously satisfies a certain quality of service (QoS) in terms of delay. With the aid of fractional programming, Lyapunov optimization theory and Lagrange method, we solve the problem and propose an dynamic energy-efficient resource allocation algorithm (DEERAA), which does not require any prior distribution knowledge of the channel state information (CSI) or stochastic data arrivals. We find that the performance of EE and delay can be adjusted by a system control parameter V. The effectiveness of the proposed algorithm is demonstrated by the mathematical analysis and simulation results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. Define an i.i.d algorithm as one that, at the beginning of each slot \(t \in \{0, 1, 2, \ldots \}\), choose a policy \(\mathbf P (t)\) by independently and probabilistically selecting \(\mathbf P \in A_{\tau (t)}\) according to some distribution that is the same for all slots t. Let \(\pmb {P^\omega }(t)\), \(t\in \{0, 1, 2, \ldots \}\) represent such an i.i.d algorithm, then \(W_A(t)\) and \(R_A(t)\) are also i.i.d over slots. \(A_{\tau (t)}\) denotes the set of all feasible power allocation options under \(\tau (t)\).

References

  1. Guo, J., Zhao, N., Yu, F. R., Liu, X., & Leung, V. C. M. (2017). Exploiting adversarial jamming signals for energy harvesting in interference networks. IEEE Transactions on Wireless Communications, 16(2), 1267–1280.

    Article  Google Scholar 

  2. Guo, J., Zhao, N., Yu, F. R., Liu X., & Leung, V. C. M. (2016). Wireless energy harvesting in interference alignment networks with adversarial jammers. (2016) In 8th International conference on wireless communications & signal processing (WCSP), Yangzhou, pp. 1–5.

  3. Zhao, N., Yu, F. R., & Leung, V. C. M. (2015). Opportunistic communications in interference alignment networks with wireless power transfer. IEEE Wireless Communications, 22(1), 88–95.

    Article  Google Scholar 

  4. Chang, Z., et al. (2016). Energy efficient resource allocation for wireless power transfer enabled collaborative mobile clouds. IEEE Journal on Selected Areas in Communications, 34(12), 3438–3450.

    Article  Google Scholar 

  5. Chang, Z., Wang, Z., Guo, X., Han, Z., & Ristaniemi, T. Energy-Efficient Resource Allocation for Wireless Powered Massive MIMO System With Imperfect CSI. in IEEE Transactions on Green Communications and Networking, 1(2), 121–130.

  6. Chang, Z., Gong, J., Ristaniemi, T., & Niu, Z. (2016). Energy-efficient resource allocation and user scheduling for collaborative mobile clouds with hybrid receivers. IEEE Transactions on Vehicular Technology, 65(12), 9834–9846.

    Article  Google Scholar 

  7. Tang, J., So, D. K. C., Shojaeifard, A., Wong, K. K., & Wen, J. (2017). Joint antenna selection and spatial switching for energy efficient MIMO SWIPT system. IEEE Transactions on Wireless Communications, 16(7), 4754–4769.

    Article  Google Scholar 

  8. Huang, K., & Lau, V. (2014). Enabling wireless power transfer in cellular networks: Architecture, modeling and deployment. IEEE Transactions on Wireless Communications, 13(2), 902–912.

    Article  Google Scholar 

  9. Ng, D. W. K., Lo, E. S., & Schober, R. (2013). Energy-efficient resource allocation in OFDMA systems with hybrid energy harvesting base station. IEEE Transactions on Wireless Communications, 12(7), 3412–3427.

    Article  Google Scholar 

  10. Nintanavongsa, P., et al. (2012). Design optimization and implementation for RF energy harvesting circuits. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 2(1), 24–33.

    Article  Google Scholar 

  11. Kim, J., Lee, H., Song, C., Oh, T., & Lee, I. (2016). Sum throughput maximization for multi-user MIMO cognitive wireless powered communication networks. IEEE Transactions on Communications, 16(10), 913–923.

    Google Scholar 

  12. Lee, H., Lee, K. J., Kim, H., Clerckx, B., & Lee, I. (2016). Resource allocation techniques for wireless powered communication networks with energy storage constraint. IEEE Transactions on Wireless Communications, 15(4):2619-2628.

  13. Li, H., Song, L., & Debbah, M. (2014). Energy efficiency of large-scale multiple antenna systems with transmit antenna selection. IEEE Transactions on Communications, 62(2), 638–647.

    Article  Google Scholar 

  14. Xiong, C., Li, G., Zhang, S., Chen, Y., & Xu, S. (2012). Energy-efficient resource allocation in OFDMA networks. IEEE Transactions on Communications, 60(12), 3767–3778.

    Article  Google Scholar 

  15. Lin, X., Huang, L., Guo, C., Zhang, P., Huang, M., & Zhang, J. (2017). Energy-efficient resource allocation in TDMS-based wireless powered communication networks. IEEE Communications Letters, 21(4), 861–864.

    Article  Google Scholar 

  16. Kim, W., & Yoon, W. (2016). Energy efficiency maximisation for WPCN with distributed massive MIMO system. Electronics Letters, 52(19), 1642–1644 9 15.

  17. Salem, A., & Hamdi, K. A., (2016). Wireless Power Transfer in Two-Way AF Relaying Networks. IEEE global communications conference (GLOBECOM). Washington, DC, 2016, 1–6.

  18. Wu, Q., Chen, W., Kwan Ng, D. W., Li, J., & Schober, R. (2016). User-centric energy efficiency maximization for wireless powered communications. IEEE Transactions on Wireless Communications, 15(10), 6898–6912.

    Article  Google Scholar 

  19. Wu, Q., Tao, M., Kwan Ng, D. W., Chen, W., & Schober, R. (2016). Energy-efficient resource allocation for wireless powered communication networks. IEEE Transactions on Wireless Communications, 15(3), 2312–2327.

    Article  Google Scholar 

  20. Yang, J., Yang, Q., Kwak, K. S., & Rao, R. R. (2017). Power-delay tradeoff in wireless powered communication networks. IEEE Transactions on Vehicular Technology, 66(4), 3280–3292.

    Article  Google Scholar 

  21. Huang, W., Chen, H., Li, Y., & Vucetic, B. (2016). On the performance of multi-antenna wireless-powered communications with energy beamforming. IEEE Transactions on Vehicular Technology, 65(3), 1801–1808.

    Article  Google Scholar 

  22. Li, Y., Sheng, M., & Shi, Y. (2014). Energy efficiency and delay tradeoff for time-varying and interference-free wireless networks.IEEE Transactions on Wireless Communications,13(11), pp. 5921–5931.

  23. Peng, M., Yu, Y., Xiang, H., & Poor, H. V. (2016). Energy-efficient resource allocation optimization for multimedia heterogeneous cloud radio access networks. IEEE Transactions on Multimedia, 18(5), 879–892.

    Article  Google Scholar 

  24. Kang, X., HO, C. K., & Sun, S. (2015). Full-duplex wireless-powered communication network with energy causality. IEEE Transactions on Wireless Communications, 14(10), 5539–5551.

    Article  Google Scholar 

  25. Zhou, X., Ho, C. K., & Zhang, R. (2016). Wireless power meets energy harvesting: A joint energy allocation approach in OFDM-based system. IEEE Transactions on Wireless Communications, 15(5), 3481–3491.

    Article  Google Scholar 

  26. Bersekas, D., & Gallager, R. (1987). Data Networks. Englewood Cliffs, NJ: Prentice-Hall.

  27. Wu, Q., Tao, M., Ng, D. W. K., Chen, W., & Schober, R. (2015). Energy-efficient transmission for wireless powered multiuser communication networks. 2015 IEEE International Conference on Communications (ICC), IEEE. pp. 154–159.

  28. Bersekas, D., & Tsitaiklia, J. (1996). Neuro-dynamic programming. Belmont: Athena Scientific.

    Google Scholar 

  29. Dinkelbach, W. (1967). On nonlinear fractional programming. Management Science, 13(7), 492–498.

    Article  MathSciNet  MATH  Google Scholar 

  30. Neely, M. J. (2013). Dynamic optimization and learning for renewal systems. IEEE Transactions on Automatic Control, 58(1), 32–46.

    Article  MathSciNet  MATH  Google Scholar 

  31. Boyd, S., & Vandenberghe, L. (2004). Convex optimization. Cambridge: Cambridge University Press.

    Book  MATH  Google Scholar 

  32. Neely, M. (2010). Stochastic network optimization with application to communication and queueing systems. San Rafael: Morgan and Claypool.

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qinghai Yang.

Appendix

Appendix

1.1 Proof of Theorem 1

Theorem 1 is proved by separately proving the necessary condition and sufficient condition of it. First, we prove the necessary condition. Let \(\pmb {\tau ^*}\) and \(\pmb {P^{tr*}}\) be the solution of (9) and according to the formulation (10), we arrive in

$$\begin{aligned} \rho _{ee}^* = \frac{\overline{R}_{A}(\pmb {\tau ^*},\pmb {P^{tr*}})}{\overline{W}_{A}(\pmb {\tau ^*},\pmb {P^{tr*}})} \ge \frac{\overline{R}_{A}(\pmb {\tau }, \pmb {P^{tr}})}{\overline{W}_{A}(\pmb {\tau }, \pmb {P^{tr}})}, \forall \pmb {\tau }, \pmb {P^{tr}} \in \mathfrak {S}. \end{aligned}$$
(37)

Rewrite the formulation above, i.e. (37), then we obtain

$$\begin{aligned}&\overline{R}_{A}(\pmb {\tau }, \pmb {P^{tr}}) - \rho _{ee}^*\overline{W}_{A}(\pmb {\tau }, \pmb {P^{tr}}) \le 0, \forall \pmb {\tau }, \pmb {P^{tr}} \in \mathfrak {S} \end{aligned}$$
(38)
$$\begin{aligned}&\overline{R}_{A}(\pmb {\tau ^*},\pmb {P^{tr*}}) - \rho _{ee}^* \overline{W}_{A}(\pmb {\tau ^*},\pmb {P^{tr*}})= 0, \forall \pmb {\tau }, \pmb {P^{tr}} \in \mathfrak {S}. \end{aligned}$$
(39)

According to (38), we have \(max\{ \overline{R}_{A}(\pmb {\tau }, \pmb {P^{tr}}) - \rho _{ee}^*\overline{W}_{A}(\pmb {\tau }, \pmb {P^{tr}}), \forall \pmb {\tau }| \pmb {P^{tr}} \in {\mathfrak {S}} = 0\). Combining with (38), we have the maximum value is taken when \(\{\pmb {\tau }, \pmb {P^{tr}}\}=\{\pmb {\tau ^*},\pmb {P^{tr*}}\}\). Thus finished the proof of necessary condition. To prove the sufficient conditon, let \(\{\{\pmb {\tau ^*},\pmb {P^{tr*}}\}\) be a solution of (11), i.e. \(\overline{R}_{A}(\pmb {\tau ^*},\pmb {P^{tr*}}) - \rho _{ee}^* \overline{W}_{A}(\pmb {\tau ^*},\pmb {P^{tr*}})= 0\), and then

$$\begin{aligned} \overline{R}_{A}(\pmb {\tau }, \pmb {P^{tr}}) - \rho _{ee}^*\overline{W}_{A}(\pmb {\tau }, \pmb {P^{tr}}) \le \overline{R}_{A}(\pmb {\tau ^*},\pmb {P^{tr*}}) - \rho _{ee}^* \overline{W}_{A}(\pmb {\tau ^*},\pmb {P^{tr*}})= 0, \forall \pmb {\tau }, \pmb {P^{tr}} \in \mathfrak {S}. \end{aligned}$$
(40)

Hence

$$\begin{aligned}&\overline{R}_{A}(\pmb {\tau }, \pmb {P^{tr}}) - \rho _{ee}^*\overline{W}_{A}(\pmb {\tau }, \pmb {P^{tr}}) \le 0, \forall \pmb {\tau }, \pmb {P^{tr}} \in \mathfrak {S}, \end{aligned}$$
(41)
$$\begin{aligned}&\overline{R}_{A}(\pmb {\tau ^*},\pmb {P^{tr*}}) - \rho _{ee}^* \overline{W}_{A}(\pmb {\tau ^*},\pmb {P^{tr*}})= 0, \forall \pmb {\tau }, \pmb {P^{tr}} \in \mathfrak {S}. \end{aligned}$$
(42)

From (41)we have \(\rho _{ee}^* \ge \frac{\overline{R}_{A}(\pmb {\tau }, \pmb {P^{tr}})}{\overline{W}_{A}(\pmb {\tau }, \pmb {P^{tr}})}, \forall \pmb {\tau }, \pmb {P^{tr}} \in \mathfrak {S}\), that is \(\rho _{ee}^*\) is the maximum of (10). From (42) we have \(\frac{\overline{R}_{A}(\pmb {\tau ^*},\pmb {P^{tr*}})}{\overline{W}_{A}(\pmb {\tau ^*},\pmb {P^{tr*}})}=\rho _{ee}^*\), that is \(\{\{\pmb {\tau ^*},\pmb {P^{tr*}}\}\) is a solution of (10). Thus finished the proof of Theorem 1. \(\square\)

1.2 Proof of Theorem 2

Theorem 2 with is proved with the aid of contradiction. We propose two solutions to \(\mathcal {P}3\). The first one is supposing the optimal solution to problem \(\mathcal {P}3\) in time-slot t is \(\varPhi ^* =\{P_0^{tr*}(t), P_k^{tr*}(t), \tau _0^*(t), \tau _k^*(t)\}, \forall k \ne 0\), and supposing the PS transmit power satisfies \(P_0^{tr*}(t)< P_0^{max}(t)\). Under such a assumption we attain the optimal solution \(\varPhi ^*\) is denoted as \(\rho ^*\). The other one solution is \(\varPhi ^\prime =\{P_0^{tr\prime }(t), P_k^{tr\prime }(t), \tau _0^\prime (t), \tau _k^\prime (t)\},\forall k \ne 0\), and suppose the PS transmit power satisfies \(P_0^{tr\prime }(t)= P_0^{max}(t)\). The corresponding optimal value is \(\rho ^\prime\). Furthermore, we assume the difference only exists in the WET stage, i.e., the condition in WIT stage between two solutions is same. Then we have \(\forall k \ne 0\),\(P_0^{tr*}(t)\tau _0^*(t)=P_0^{tr\prime }(t)\tau _0^\prime (t), \tau _k^*(t)=\tau _k^\prime (t), P_k^{tr*}(t)=P_k^{tr\prime }(t), W_k^*(v)=W_k^\prime (v),R_k^*(v)=R_k^\prime (v)\). Now, we can compare the value \(\rho ^*\) and \(\rho ^\prime\), which are given by Eqs. (43) and (44), at the top of next page to find the relationship between them. According to the assumption that \(P_0^{tr\prime }(t)= P_0^{max}(t)>P_0^{tr*}(t)\), \(P_0^{tr*}(t)\tau _0^*(t)=P_0^{tr\prime }(t)\tau _0^\prime (t)\), then we obtain \(\tau _0^\prime (t)<\tau _0^*(t)\). Comparing the two equations, i.e.,Eqs. (43) and (44), we can obtain \(\rho ^*<\rho ^\prime\) which contradicts the assumption that \(\rho ^*\) is the optimal solution. Thus Theorem 2 is proved. \(\square\)

$$\begin{aligned} \rho ^\prime= & {} \frac{\sum _{v=1}^t\left( \sum _{k=1}^KR_k^\prime (v)\right) }{\sum _{v=1}^{t-1}\left( P_0^{tr\prime }(v)\tau _0^\prime (v)+P_0^{ci}\tau _0^\prime (v)-\sum _{k=1}^KW_k^\prime (v)+\sum _{k=1}^K\left( P_k^{tr\prime }(v)+P_k^{ci\prime }(v)\right) \tau _k^\prime (v)\right) }. \end{aligned}$$
(43)
$$\begin{aligned} \rho ^*= & {} \frac{\sum _{v=1}^t\left( \sum _{k=1}^KR_k^*(v)\right) }{\sum _{v=1}^{t-1}\left( P_0^{tr*}(v)\tau _0^*(v)+P_0^{ci}\tau _0^*(v)-\sum _{k=1}^KW_k^*(v)+\sum _{k=1}^K\left( P_k^{tr*}(v)+P_k^{ci*}(v)\right) \tau _k^*(v)\right) }. \end{aligned}$$
(44)

1.3 Proof of (17)

Squaring both sides of Eq. (7) results in

$$\begin{aligned} \left( Q_k^D(t+1)\right) ^2\le&(Q_k^D(t))^2+(R_k(t))^2+(D_k(t))^2-2Q_k^D(t)(R_k(t)-D_k(t)). \end{aligned}$$
(45)

Sum overall \(k(k=1, ...,K)\), take the conditional expectation \(\mathbb {E}\{\cdot |Z(t)\}\), and recall \(R_k(t)\le R_k^{max}\), \(D_k(t)\le D_k^{max}\), then

$$\begin{aligned} \varDelta \{Z(t)\}\le & {} \frac{1}{2}\sum _{k=1}^K\mathbb {E}\{(D_k(t))^2+(R_k(t))^2|Z(t)\} -\sum _{k=1}^K\mathbb {E}\{Q_k^D(t)\left( (R_k(t)-D_k(t))|Z(t)\right) \}\nonumber \\\le & {} c^{M}-\sum _{k=1}^K\mathbb {E}\{Q_k^D(t)\left( R_k(t)|Z(t)\right) \} +\sum _{k=1}^K\mathbb {E}\{Q_k^D(t)\left( D_k(t)|Z(t)\right) \}, \end{aligned}$$
(46)

where \(c^{M}=\frac{1}{2}\sum _{k=1}^K\left( (D_k^{max}(t))^2+(R_k^{max}(t))^2\right)\). Define \(C^{M}=c^{M}+\sum _{k=1}^K\mathbb {E}\{Q_k^D(t)\left( D_k(t)|Z(t)\right) \}\), and then we obtain (17). This finished the proof. \(\square\)

1.4 Proof of (35) and (36)

Adopt an i.i.d. algorithm and we can transform (18) into (47)

$$\begin{aligned}&\triangle \{Z(t)\}-VE\{{R_{A}(t )-\rho _{ee}(t ){W_{A}}(t)}\left| \right. Z(t)\}\nonumber \\&\quad \le C^{M} -E\left\{ V\left\{ R_{A}^\omega (t )-\rho _{ee}(t ){W_{A}^\omega }(t)\right\} \left| \right. Z(t)\right\} -E\left\{ \sum _{k=1}^KQ_k^D(t)R_k^\omega (t)\left| \right. Z(t)\right\} \end{aligned}$$
(47)

Plugging (33) and (34) into (47) and taking a limit as \(\varepsilon \rightarrow 0\) yield

$$\begin{aligned}&\triangle \{Z(t)\}-VE\{{R_{A}}(t) - \rho _{ee}(t ){W_{A}}(t)|Z(t)\} \le c^{M}-V\rho _{ee}^{opt}E\{{W_{A}^\omega }(t)\}+VE\{\rho _{ee}(t){W_{A}^\omega }(t)\}. \end{aligned}$$
(48)

By taking iterated expectation and using telescoping sums over \(t \in \{1, \ldots , T\}\) in (48), and then we obtain

$$\begin{aligned} E\{L(Z(T))\}-E\{L(Z(1))\}\le&T(c^{M}-V\rho _{ee}^{opt}E\{{W_{A}^\omega }(t)\})\nonumber \\&+V\sum _{t=1}^TE\{\rho _{ee}(t){R_{A}^\omega }(t)\} +V\sum _{t=1}^TE\{{R_{A}}(t) - \rho _{ee}(t ){W_{A}}(t)|Z(t)\}. \end{aligned}$$
(49)

Dividing (49) by VT and using the fact that \(E\{L(Z(T))\}\ge 0\), we acquire

$$\begin{aligned} \frac{1}{T}\sum _{t=1}^TE\{{R_{A}}(t) - \rho _{ee}(t ){W_{A}}(t)\} \ge -\frac{E\{L(Z(1))\}}{VT}-\frac{c^{M}}{V}+\rho _{ee}^{opt}E\{{W_{A}^\omega }(t)\} -E\{{W_{A}^\omega }(t)\}\frac{1}{T}\sum _{t=1}^TE\{\rho _{ee}(t)\}. \end{aligned}$$
(50)

Taking the limit as \(T\rightarrow \infty\) , and after some manipulations, then we obtain

$$\begin{aligned} \rho _{ee}\ge \rho _{ee}^{opt} - \frac{c^{M}/E\{{W_{A}^\omega }(t)\}}{V} \ge \rho _{ee}^{opt} - \frac{c^{M}/W_{A_{min}}}{V}. \end{aligned}$$
(51)

Similarly, plug (33) and (34) into (47), take iterated expectation and use telescoping sums over \(t \in \{1, \cdots , T\}\), then

$$\begin{aligned}&E\{L(Z(T))\}-E\{L(Z(1))\}+\varepsilon \sum _{t=1}^T\sum _{k=1}^KQ_k^D(t)-V\sum _{t=1}^TE\{\rho _{ee}(t){W_{A}^\omega }(t)\}\nonumber \\&\quad \le T(c^{M}-V\rho _{ee}^{opt}E\{{W_{A}^\omega }(t)\}) +V\sum _{t=1}^TE\{{R_{A}}(t) - \rho _{ee}(t ){W_{A}}(t)\}. \end{aligned}$$
(52)

Divide (52) by \(\varepsilon T\) and take limit as \(T\rightarrow \infty\)

$$\begin{aligned} \overline{Q}=\lim _{T \rightarrow \infty } \frac{1}{T} \sum _{t=1}^T \sum _{k=1}^K Q_k^D(t)\le \frac{c^{M}+V\left\{ R_{A_{max}}+\rho _{ee}^{opt}(W_{A_{max}}-W_{A_{min}})\right\} }{\varepsilon }. \end{aligned}$$
(53)

This finished the proof of Eqs. (35) and (36). \(\square\)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, J., Yang, Q. Dynamic energy-efficient resource allocation in wireless powered communication network. Wireless Netw 25, 3005–3018 (2019). https://doi.org/10.1007/s11276-018-1699-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-018-1699-y

Keywords

Navigation