Analysis of HBsAg mutations in the 25 years after the implementation of the hepatitis B vaccination plan in China

Abstract

Since 1992, China has promoted hepatitis B vaccination. Concurrently, during this period, increasing use of immunoglobulins and nucleoside analogues might have exerted selective pressure on the hepatitis B virus (HBV) S gene, driving mutations in the HBsAg and changed the subtype. Using the National Center for Biotechnology Information database, we obtained gene sequence information for HBV strains from China and analysed changes in HBsAg subtypes and substitution mutations in HBsAg in 5-year intervals over 25 years to identify potential challenges to the prevention and treatment of hepatitis B. Most HBV sequences from China were genotype C (1996/2833, 70.46%) or B (706/2833, 24.92%). During the implementation of hepatitis B vaccination (recombinant hepatitis B vaccine was subgenotype A2 and HBsAg subtype adw2), the proportion of subtypes ayw1 and adw3 in genotype B and ayw2 in genotype C increased over the programme period. The overall mutation rate in HBsAg tended to decrease for genotype B, whereas, for genotype C, the rate increased gradually and then decreased slightly. Moreover, the mutation rate at some HBsAg amino acid sites (such as sG145 of genotype B and sG130 and sK141 of genotype C) is gradually increasing. HBV strains with internal stop codons of HBsAg (e.g., sC69*) and additional N-glycosylation (e.g., sG130N) mutations should be studied extensively to prevent them from becoming dominant circulating strains. The development of HBV vaccines and antiviral immunoglobulins and use of antiviral drugs may require making corresponding changes.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2

Data availability

The datasets generated and analyzed during this study are available with the corresponding author, on reasonable request.

References

  1. 1.

    Uz-Zaman MH, Rahman A, Yasmin M (2018) Epidemiology of hepatitis B virus infection in Bangladesh: prevalence among general population, risk groups and genotype distribution. Genes (Basel) 9(11):2–16. https://doi.org/10.3390/genes9110541

    CAS  Article  Google Scholar 

  2. 2.

    Kramvis A (2014) Genotypes and genetic variability of hepatitis B virus. Intervirology 57(3–4):141–150. https://doi.org/10.1159/000360947

    Article  PubMed  Google Scholar 

  3. 3.

    Purdy MA, Talekar G, Swenson P et al (2007) A new algorithm for deduction of hepatitis B surface antigen subtype determinants from the amino acid sequence. Intervirology 50(1):45–51. https://doi.org/10.1159/000096312

    CAS  Article  PubMed  Google Scholar 

  4. 4.

    Gerlich WH, Glebe D, Kramvis A et al (2020) Peculiarities in the designations of hepatitis B virus genes, their products, and their antigenic specificities: a potential source of misunderstandings. Virus Genes 56(2):109–119. https://doi.org/10.1007/s11262-020-01733-9

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  5. 5.

    Norder H, Courouce AM, Coursaget P et al (2004) Genetic diversity of hepatitis B virus strains derived worldwide: genotypes, subgenotypes, and HBsAg subtypes. Intervirology 47(6):289–309. https://doi.org/10.1159/000080872

    Article  PubMed  Google Scholar 

  6. 6.

    Ohnuma H, Machida A, Okamoto H et al (1993) Allelic subtypic determinants of hepatitis B surface antigen (i and t) that are distinct from d/y or w/r. J Virol 67(2):927–932

    CAS  Article  Google Scholar 

  7. 7.

    Yu DM, Li XH, Mom V et al (2014) N-glycosylation mutations within hepatitis B virus surface major hydrophilic region contribute mostly to immune escape. J Hepatol 60(3):515–522. https://doi.org/10.1016/j.jhep.2013.11.004

    CAS  Article  PubMed  Google Scholar 

  8. 8.

    Ho JK, Jeevan-Raj B, Netter HJ (2020) Hepatitis B virus (HBV) subviral particles as protective vaccines and vaccine platforms. Viruses 12(2):1–26. https://doi.org/10.3390/v12020126

    CAS  Article  Google Scholar 

  9. 9.

    Bian T, Yan H, Shen L et al (2013) Change in hepatitis B virus large surface antigen variant prevalence 13 years after implementation of a universal vaccination program in China. J Virol 87(22):12196–12206. https://doi.org/10.1128/JVI.02127-13

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  10. 10.

    Gerlich WH (2015) Prophylactic vaccination against hepatitis B: achievements, challenges and perspectives. Med Microbiol Immunol 204(1):39–55. https://doi.org/10.1007/s00430-014-0373-y

    CAS  Article  PubMed  Google Scholar 

  11. 11.

    Ni YH, Chang MH, Wu JF et al (2012) Minimization of hepatitis B infection by a 25-year universal vaccination program. J Hepatol 57(4):730–735. https://doi.org/10.1016/j.jhep.2012.05.021

    Article  PubMed  Google Scholar 

  12. 12.

    Pancher M, Desire N, Ngo Y et al (2015) Coexistence of circulating HBsAg and anti-HBs antibodies in chronic hepatitis B carriers is not a simple analytical artifact and does not influence HBsAg quantification. J Clin Virol 62:32–37. https://doi.org/10.1016/j.jcv.2014.11.015

    CAS  Article  PubMed  Google Scholar 

  13. 13.

    Sayiner AA, Agca H, Sengonul A et al (2007) A new hepatitis B virus vaccine escape mutation in a renal transplant recipient. J Clin Virol 38(2):157–160. https://doi.org/10.1016/j.jcv.2006.12.002

    CAS  Article  PubMed  Google Scholar 

  14. 14.

    Chen J, Liu Y, Zhao J et al (2016) Characterization of novel hepatitis B virus PreS/S-gene mutations in a patient with occult hepatitis B virus infection. PLoS ONE 11(5):e0155654. https://doi.org/10.1371/journal.pone.0155654

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  15. 15.

    Su M, Xiang K, Li Y et al (2016) Higher detection rates of amino acid substitutions in HBV reverse transcriptase/surface protein overlapping sequence is correlated with lower serum HBV DNA and HBsAg levels in HBeAg-positive chronic hepatitis B patients with subgenotype B2. Infect Genet Evol 40:275–281. https://doi.org/10.1016/j.meegid.2016.03.019

    CAS  Article  PubMed  Google Scholar 

  16. 16.

    Yonghao G, Jin X, Jun L et al (2015) An epidemiological serosurvey of hepatitis B virus shows evidence of declining prevalence due to hepatitis B vaccination in central China. Int J Infect Dis 40:75–80. https://doi.org/10.1016/j.ijid.2015.10.002

    Article  PubMed  Google Scholar 

  17. 17.

    Gerlich WH (2017) Do we need better hepatitis B vaccines? Indian J Med Res 145(4):414–419. https://doi.org/10.4103/ijmr.IJMR_1852_16

    Article  PubMed  PubMed Central  Google Scholar 

  18. 18.

    Hsu HY, Chang MH, Liaw SH et al (1999) Changes of hepatitis B surface antigen variants in carrier children before and after universal vaccination in Taiwan. Hepatology 30(5):1312–1317. https://doi.org/10.1002/hep.510300511

    CAS  Article  PubMed  Google Scholar 

  19. 19.

    Tallo T, Tefanova V, Priimagi L et al (2008) D2: major subgenotype of hepatitis B virus in Russia and the Baltic region. J Gen Virol 89(Pt 8):1829–1839. https://doi.org/10.1099/vir.0.83660-0

    CAS  Article  PubMed  Google Scholar 

  20. 20.

    Kramvis A, Kew M, Francois G (2005) Hepatitis B virus genotypes. Vaccine 23(19):2409–2423. https://doi.org/10.1016/j.vaccine.2004.10.045

    CAS  Article  PubMed  Google Scholar 

  21. 21.

    Bartholomeusz A, Schaefer S (2004) Hepatitis B virus genotypes: comparison of genotyping methods. Rev Med Virol 14(1):3–16. https://doi.org/10.1002/rmv.400

    CAS  Article  PubMed  Google Scholar 

  22. 22.

    Delport W, Poon AF, Frost SD et al (2010) Datamonkey 2010: a suite of phylogenetic analysis tools for evolutionary biology. Bioinformatics 26(19):2455–2457. https://doi.org/10.1093/bioinformatics/btq429

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  23. 23.

    Pan XF, Griffiths UK, Pennington M et al (2015) Systematic review of economic evaluations of vaccination programs in mainland China: are they sufficient to inform decision making? Vaccine 33(46):6164–6172. https://doi.org/10.1016/j.vaccine.2015.09.081

    Article  PubMed  Google Scholar 

  24. 24.

    Ponde RA (2011) The underlying mechanisms for the “simultaneous HBsAg and anti-HBs serological profile”. Eur J Clin Microbiol Infect Dis 30(11):1325–1340. https://doi.org/10.1007/s10096-011-1240-z

    CAS  Article  PubMed  Google Scholar 

  25. 25.

    Fu X, Chen J, Chen H et al (2017) Mutation in the S gene of hepatitis B virus and anti-HBs subtype-nonspecificity contributed to the coexistence of HBsAg and anti-HBs in patients with chronic hepatitis B virus infection. J Med Virol 89(8):1419–1426. https://doi.org/10.1002/jmv.24782

    CAS  Article  PubMed  Google Scholar 

  26. 26.

    Cassidy A, Mossman S, Olivieri A et al (2011) Hepatitis B vaccine effectiveness in the face of global HBV genotype diversity. Expert Rev Vaccines 10(12):1709–1715. https://doi.org/10.1586/erv.11.151

    CAS  Article  PubMed  Google Scholar 

  27. 27.

    Van Den Ende C, Marano C, Van Ahee A et al (2017) The immunogenicity and safety of GSK’s recombinant hepatitis B vaccine in adults: a systematic review of 30 years of experience. Expert Rev Vaccines 16(8):811–832. https://doi.org/10.1080/14760584.2017.1338568

    CAS  Article  Google Scholar 

  28. 28.

    Wen W-H, Chen H-L, Ni Y-H et al (2011) Secular trend of the viral genotype distribution in children with chronic hepatitis B virus infection after universal infant immunization. Hepatology 53(2):429–436. https://doi.org/10.1002/hep.24061

    Article  PubMed  Google Scholar 

  29. 29.

    Lee KM, Kim YS, Ko YY et al (2001) Emergence of vaccine-induced escape mutant of hepatitis B virus with multiple surface gene mutations in a Korean child. J Korean Med Sci 16(3):359–362

    CAS  Article  Google Scholar 

  30. 30.

    Verheyen J, Neumann-Fraune M, Berg T et al (2012) The detection of HBsAg mutants expressed in vitro using two different quantitative HBsAg assays. J Clin Virol 54(3):279–281. https://doi.org/10.1016/j.jcv.2012.04.010

    CAS  Article  PubMed  Google Scholar 

  31. 31.

    Thibault V, Servant-Delmas A, Ly TD et al (2017) Performance of HBsAg quantification assays for detection of Hepatitis B virus genotypes and diagnostic escape-variants in clinical samples. J Clin Virol 89:14–21. https://doi.org/10.1016/j.jcv.2017.02.001

    CAS  Article  PubMed  Google Scholar 

  32. 32.

    Wang T, Cui D, Chen S et al (2019) Analysis of clinical characteristics and S gene sequences in chronic asymptomatic HBV carriers with low-level HBsAg. Clin Res Hepatol Gastroenterol 43(2):179–189. https://doi.org/10.1016/j.clinre.2018.08.015

    CAS  Article  PubMed  Google Scholar 

  33. 33.

    Kampfrath T, Jortani SA, Levinson SS (2014) Resolving a case of concurrent hepatitis B virus surface antigen (HBsAg) and surface antibody (HBsAb). Clin Chim Acta 430:171–172. https://doi.org/10.1016/j.cca.2014.01.016

    CAS  Article  PubMed  Google Scholar 

  34. 34.

    Osiowy C, Kowalec K, Giles E (2016) Discordant diagnostic results due to a hepatitis B virus T123A HBsAg mutant. Diagn Microbiol Infect Dis 85(3):328–333. https://doi.org/10.1016/j.diagmicrobio.2016.04.004

    CAS  Article  PubMed  Google Scholar 

  35. 35.

    Wang ML, Tang H (2016) Nucleos(t)ide analogues causes HBV S gene mutations and carcinogenesis. Hepatobiliary Pancreat Dis Int 15(6):579–586. https://doi.org/10.1016/s1499-3872(16)60064-4

    Article  PubMed  Google Scholar 

  36. 36.

    Colledge D, Soppe S, Yuen L et al (2017) Stop codons in the hepatitis B surface proteins are enriched during antiviral therapy and are associated with host cell apoptosis. Virology 501:70–78. https://doi.org/10.1016/j.virol.2016.11.007

    CAS  Article  PubMed  Google Scholar 

  37. 37.

    Xiang KH, Michailidis E, Ding H et al (2017) Effects of amino acid substitutions in hepatitis B virus surface protein on virion secretion, antigenicity HBsAg and viral DNA. J Hepatol 66(2):288–296. https://doi.org/10.1016/j.jhep.2016.09.005

    CAS  Article  PubMed  Google Scholar 

  38. 38.

    Ding H, Liu B, Zhao C et al (2014) Amino acid similarities and divergences in the small surface proteins of genotype C hepatitis B viruses between nucleos(t)ide analogue-naive and lamivudine-treated patients with chronic hepatitis B. Antiviral Res 102:29–34. https://doi.org/10.1016/j.antiviral.2013.11.015

    CAS  Article  PubMed  Google Scholar 

  39. 39.

    Cento V, Van Hemert F, Neumann-Fraune M et al (2013) Anti-HBV treatment induces novel reverse transcriptase mutations with reflective effect on HBV S antigen. J Infect 67(4):303–312. https://doi.org/10.1016/j.jinf.2013.05.008

    Article  PubMed  Google Scholar 

  40. 40.

    Colagrossi L, Hermans LE, Salpini R et al (2018) Immune-escape mutations and stop-codons in HBsAg develop in a large proportion of patients with chronic HBV infection exposed to anti-HBV drugs in Europe. BMC Infect Dis 18(1):251. https://doi.org/10.1186/s12879-018-3161-2

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  41. 41.

    Warner N, Locarnini S (2008) The antiviral drug selected hepatitis B virus rtA181T/sW172* mutant has a dominant negative secretion defect and alters the typical profile of viral rebound. Hepatology 48(1):88–98. https://doi.org/10.1002/hep.22295

    CAS  Article  PubMed  Google Scholar 

  42. 42.

    Lee SA, Kim K, Kim H et al (2012) Nucleotide change of codon 182 in the surface gene of hepatitis B virus genotype C leading to truncated surface protein is associated with progression of liver diseases. J Hepatol 56(1):63–69. https://doi.org/10.1016/j.jhep.2011.06.028

    CAS  Article  PubMed  Google Scholar 

  43. 43.

    Hadiji-Abbes N, Mihoubi W, Martin M et al (2015) Characterization of C69R variant HBsAg: effect on binding to anti-HBs and the structure of virus-like particles. Arch Virol 160(10):2427–2433. https://doi.org/10.1007/s00705-015-2515-y

    CAS  Article  PubMed  Google Scholar 

  44. 44.

    Shirvani-Dastgerdi E, Winer BY, Celia-Terrassa T et al (2017) Selection of the highly replicative and partially multidrug resistant rtS78T HBV polymerase mutation during TDF-ETV combination therapy. J Hepatol 67(2):246–254. https://doi.org/10.1016/j.jhep.2017.03.027

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  45. 45.

    Gerlich WH, Lu X, Heermann KH (1993) Studies on the attachment and penetration of hepatitis B virus. J Hepatol 17(Suppl 3):S10–S14

    CAS  Article  Google Scholar 

  46. 46.

    Qiao Y, Lu SS, Xu ZH et al (2017) Additional N-glycosylation mutation in the major hydrophilic region of hepatitis B virus S gene is a risk indicator for hepatocellular carcinoma occurrence in patients with coexistence of HBsAg/anti-HBs. Oncotarget 8(37):61719–61730. https://doi.org/10.18632/oncotarget.18682

    Article  PubMed  PubMed Central  Google Scholar 

  47. 47.

    Zhang S, Cao X, Gao Q et al (2017) Protein glycosylation in viral hepatitis-related HCC: characterization of heterogeneity, biological roles, and clinical implications. Cancer Lett 406:64–70. https://doi.org/10.1016/j.canlet.2017.07.026

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the Fujian Provincial Health and Family Planning Research Talents Training Project (No. 2018-2-67) and Xiamen Municipal Health and Family Planning Commission. Authors have no conflicting interests to declare relevant to this study. We thank Ms. Bihuan Che for her kindly technical support.

Author information

Affiliations

Authors

Contributions

HY and JT conceived of and designed the study; HY, XF, JT, YW, and ZL performed the research; HY, XF, and JT analyzed the data; and XF wrote the paper.

Corresponding author

Correspondence to Xiaochun Fu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All applicable international, national, and/or institutional guidelines of ethical approval were followed.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Edited by Wolfram H. Gerlich.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 56 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ye, H., Teng, J., Lin, Z. et al. Analysis of HBsAg mutations in the 25 years after the implementation of the hepatitis B vaccination plan in China. Virus Genes (2020). https://doi.org/10.1007/s11262-020-01773-1

Download citation

Keywords

  • Hepatitis B virus
  • Vaccine
  • Mutation rate
  • Stop codon
  • N-glycosylation