Advertisement

Virus Genes

, Volume 54, Issue 2, pp 272–279 | Cite as

An Iranian genomic sequence of Beet mosaic virus provides insights into diversity and evolution of the world population

  • Musa Mohammadi
  • Adrian J. Gibbs
  • Ahmad Hosseini
  • Samin Hosseini
Article

Abstract

Beet mosaic virus (BtMV), the only Potyvirus known to infect sugar beet, occurs worldwide in beet crops. The full genome sequencing of a BtMV isolate from Iran (Ir-VRU), enabled us to better understand the evolutionary history of this virus. Selection analysis suggested that BtMV evolution is mainly under negative selection but its strength varies in different proteins with the multifunctional proteins under strongest selection. Recombination has played a major role in the evolution of the BtMVs; only the Ir-VRU and USA isolates show no evidence of recombination. The ML phylogenies of BtMVs from coat protein and full sequences were completely congruent. The primary divergence of the BtMV phylogeny is into USA and Eurasian lineages, and the latter then divides to form a cluster only found in Iran, and a sister cluster that includes all the European and Chinese isolates. A simple patristic dating method estimated that the primary divergence of the BtMV population was only 360 (range 260–490) years ago, suggesting an emergence during the development of sugar beet as a crop over the past three centuries rather than with the use of leaf beet as a vegetable for at least 2000 years.

Keywords

Beet mosaic virus Evolution Dating Recombination Seed transmission 

Notes

Acknowledgements

The authors would like to thank to Tahereh Ramazani for kindly collecting beet samples.

Author contributions

AH and SH prepared and provided laboratory support, MM amplified and sequenced the IR-VRU isolate, carried out the analyses, and wrote the draft manuscript, AG designed the dating method, interpreted the results, and edited the manuscript. All authors read and approved the final manuscript.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Supplementary material

11262_2018_1533_MOESM1_ESM.docx (19 kb)
Supplementary material 1 (DOCX 18 kb)

References

  1. 1.
    M.M. Romeiras, A. Vieira, D.N. Silva, M. Moura, A. Santos-Guerra, D. Batista, M.C. Duarte, O.S. Paulo, PLoS ONE (2016).  https://doi.org/10.1371/journal.pone.0152456 PubMedPubMedCentralGoogle Scholar
  2. 2.
  3. 3.
    G.H. Coons, Proc. Am. Soc. Sugar Beet Technol. 8, 2 (1954)Google Scholar
  4. 4.
    A.S. Marggraf, Histoire De L’académie Royale Des Sciences Et Belles-lettres De Berlin. (Deutsche Akademie der Wissenschaften zu Berlin, 1747), pp. 79–90Google Scholar
  5. 5.
    P. Hanelt, R. Buttner, R. Mansfeld, Mansfeld’s Encyclopedia of Agricultural and Horticultural Crops (Except Ornamentals) (Springer, Berlin, 2001), pp. 237–240CrossRefGoogle Scholar
  6. 6.
    C. Winner, in The Sugar Beet Crop, ed. By D. A. Cooke, R. K. Scott (Springer, 1993), pp. 1Google Scholar
  7. 7.
    G.E. Russell, C.M.I./A.A.B. Descr Plant Vir 53, 3 (1971)Google Scholar
  8. 8.
    R.M. Harveson, L.E. Hanson, G.L. Hein, Compendium of Beet Diseases and Pests, 2nd edn. (APS Press, New York, 2009)Google Scholar
  9. 9.
    E. Prillieux, G. Delacroix, Acad. Des Sci. Compt. Rend. 127, 6 (1898)Google Scholar
  10. 10.
    D.D. Sutic, R.E. Ford, M.T. Tosic, Handbook of Plant Virus Diseases (CRC Press, Baco Raton, 1999), pp. 276–291Google Scholar
  11. 11.
    L.K. Jones, Mosaic Disease of Beets (Washington Agricultural Experiment Station Bulletin, Washington, 1931)Google Scholar
  12. 12.
    K.M. Smith, Textbook of Plant Virus Diseases, 3rd edn. (Academic Press, Cambridge, 1972), pp. 92–95Google Scholar
  13. 13.
    S. Veerakone, J.Z. Tang, L.I. Ward, L.W. Liefting, Z. Perez-Egusquiza, B.S.M. Lebas, C. Delmiglio, J.D. Fletcher, P.L. Guy, Australas. Plant. Pathol. (2015).  https://doi.org/10.1007/s13313-015-0366-3 Google Scholar
  14. 14.
  15. 15.
    A.N. Dusi, D. Peters, J. Phytopathol. (1999).  https://doi.org/10.1046/j.1439-0434.1999.147005293.x Google Scholar
  16. 16.
    H.Y. Wang, X.D. Li, Y.Y. Liu, B. Wang, X.P. Zhu, Plant Pathol. (2008).  https://doi.org/10.1111/j.1365-3059.2008.01852.x Google Scholar
  17. 17.
    R.J. Shepherd, B.B. Till, N. Schaad, J. Am. Sug. Beet Technol. 14, 2 (1966)Google Scholar
  18. 18.
    S.G. Kumari, A. Najar, N. Attar, M.H. Loh, H.J. Vetten, Plant Dis. (2010).  https://doi.org/10.1094/PDIS-94-8-1068C Google Scholar
  19. 19.
    R. Shepherd, F. Hills, D. Hall, J. Am. Soc. Sug. Beet Technol. 13, 3 (1964)Google Scholar
  20. 20.
    W.M. Wintermantel, Plant Dis. (2005).  https://doi.org/10.1094/PD-89-0325 Google Scholar
  21. 21.
    J. Chen, J. Chen, M.J. Adams, Arch. Virol. (2001).  https://doi.org/10.1007/s007050170144 Google Scholar
  22. 22.
    C. Ha, S. Coombs, P.A. Revill, R.M. Harding, M. Vu, J.L. Dale, Arch. Virol. (2008).  https://doi.org/10.1007/s00705-007-1053-7 Google Scholar
  23. 23.
    G. Lu, E.N. Moriyama, Brief Bioinform. (2004).  https://doi.org/10.1093/bib/5.4.378 PubMedGoogle Scholar
  24. 24.
    J. Ye, G. Coulouris, I. Zaretskaya, I. Cutcutache, S. Rozen, T.L. Madden, BMC Bioinform. (2012).  https://doi.org/10.1186/1471-2105-13-134 Google Scholar
  25. 25.
    T.A. Hall, Nucleic Acids Symp. Ser. 41, 41 (1999)Google Scholar
  26. 26.
    H. Hasan, Generation of an infectious beet mosaic virus (BtMV) full-length clone based on the complete nucleotide sequence of a german isolate (Hannover University, Hannover, 2004)Google Scholar
  27. 27.
    K. Katoh, D.M. Standley, Mol. Biol. Evol. (2013).  https://doi.org/10.1093/molbev/mst010 PubMedPubMedCentralGoogle Scholar
  28. 28.
    F. Abascal, R. Zardoya, M.J. Telford, Nucleic Acids Res. (2010).  https://doi.org/10.1093/nar/gkq291 PubMedPubMedCentralGoogle Scholar
  29. 29.
    D. Darriba, G.L. Taboada, R. Doallo, D. Posada, Nat. Methods (2012).  https://doi.org/10.1038/nmeth.2109 PubMedPubMedCentralGoogle Scholar
  30. 30.
    D. Darriba, G.L. Taboada, R. Doallo, D. Posada, Bioinformatics (2011).  https://doi.org/10.1093/bioinformatics/btr088 PubMedPubMedCentralGoogle Scholar
  31. 31.
    A. Stamatakis, Bioinformatics (2014).  https://doi.org/10.1093/bioinformatics/btu033 Google Scholar
  32. 32.
    H. Shimodaira, M. Hasegawa, Mol. Biol. Evol. (1999).  https://doi.org/10.1093/oxfordjournals.molbev.a026201 Google Scholar
  33. 33.
    G. Yu, D.K. Smith, H. Zhu, Y. Guan, T.T.Y. Lam, Methods Ecol. Evol. (2016).  https://doi.org/10.1111/2041-210X.12628 Google Scholar
  34. 34.
    D.P. Martin, B. Murrell, M. Golden, A. Khoosal, Virus Evol. (2015).  https://doi.org/10.1093/ve/vev003 Google Scholar
  35. 35.
    S.L. Kosakovsky Pond, S.D. Frost, Mol. Biol. Evol. (2005).  https://doi.org/10.1093/molbev/msi105 PubMedGoogle Scholar
  36. 36.
    W. Delport, A.F. Poon, S.D. Frost, S.L.K. Pond, Bioinformatics. (2010).  https://doi.org/10.1093/bioinformatics/btq429 PubMedPubMedCentralGoogle Scholar
  37. 37.
    A.J. Gibbs, H.D. Nguyen, K. Ohshima, Curr Opin Virol. (2015).  https://doi.org/10.1016/j.coviro.2014.12.004 PubMedGoogle Scholar
  38. 38.
    M. Fourment, M.J. Gibbs, BMC Evol. Biol. (2006).  https://doi.org/10.1186/1471-2148-6-1 PubMedPubMedCentralGoogle Scholar
  39. 39.
    R.J. Jackson, C.U. Hellen, T.V. Pestova, Nat. Rev. Mol. Cell. Biol. (2010).  https://doi.org/10.1038/nrm2838 PubMedPubMedCentralGoogle Scholar
  40. 40.
    M.J. Adams, J.F. Antoniw, F. Beaudoin, Mol Plant Pathol. (2005).  https://doi.org/10.1111/j.1364-3703.2005.00296.x Google Scholar
  41. 41.
    L.G. Nemchinov, J. Hammond, R. Jordan, R.W. Hammond, Arch. Virol. (2004).  https://doi.org/10.1007/s00705-003-0278-3 PubMedGoogle Scholar
  42. 42.
    B.Y.W. Chung, W.A. Miller, J.F. Atkins, A.E. Firth, Proc. Natl. Acad. Sci. (2008).  https://doi.org/10.1073/pnas.0800468105 Google Scholar
  43. 43.
  44. 44.
    H. Xiang, Y.H. Han, C. Han, D. Li, J. Yu, Virus Genes (2007).  https://doi.org/10.1007/s11262-007-0132-x PubMedGoogle Scholar
  45. 45.
    A. Gibbs, K. Ohshima, Annu. Rev. Phytopathol. (2010).  https://doi.org/10.1146/annurev-phyto-073009-114404 PubMedGoogle Scholar
  46. 46.
    A.J. Gibbs, K. Ohshima, R. Yasaka, M. Mohammadi, M.J. Gibbs, R.A. Jones, Virus Evol. (2017).  https://doi.org/10.1093/ve/vex002 PubMedPubMedCentralGoogle Scholar
  47. 47.
    H.D. Nguyen, Y. Tomitaka, S.Y. Ho, S. Duchêne, H.J. Vetten, D. Lesemann, J.A. Walsh, A.J. Gibbs, K. Ohshima, PLoS ONE (2013).  https://doi.org/10.1371/journal.pone.0055336 Google Scholar
  48. 48.
    B. Desplanque, P. Boudry, K. Broomberg, P. Saumitou-Laprade, J. Cuguen, H. Van Dijk, Theor. Appl. Genet. (1999).  https://doi.org/10.1007/s001220051184 Google Scholar
  49. 49.
    S. Fénart, J.F. Arnaud, I. De Cauwer, J. Cuguen, Theor. Appl. Genet. (2008).  https://doi.org/10.1007/s00122-008-0735-1 PubMedGoogle Scholar
  50. 50.
    A.A. Brunt, K. Crabtree, M.J. Dallwitz, A.J. Gibbs, L. Watson, Viruses of plants: Descriptions and lists from the VIDE database (Cab International, Wallingford, 1996)Google Scholar
  51. 51.
    A.J. Gibbs, A.M. Mackenzie, K.J. Wei, M.J. Gibbs, Arch. Virol. (2008).  https://doi.org/10.1007/s00705-008-0134-6 Google Scholar
  52. 52.
    M. Arjmand, J. Sugar Beet Res. 30, 4 (1993)CrossRefGoogle Scholar
  53. 53.
    G. Geng, J. Yang, Sugar Tech. (2015).  https://doi.org/10.1007/s12355-014-0353-y Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Plant ProtectionVali-e-Asr University of RafsanjanRafsanjanIran
  2. 2.Emeritus FacultyAustralian National UniversityCanberraAustralia

Personalised recommendations