Skip to main content
Log in

Speeding-up Simulation of Multiphase Flow in Digital Images of Heterogeneous Porous Media by Curvelet Transformation

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

Multiphase fluid flow in porous media is important to a wide variety of processes of fundamental scientific and practical importance. Developing a model for the pore space of porous media represents the first step for simulating such flows. With rapid increase in the computation power and advances in instrumentation and imaging processes, it has become feasible to carry out simulation of multiphase flow in two- and three-dimensional images of porous media, hence dispensing with development of models of pore space that are based on approximating their morphology. Image-based simulations are, however, very time consuming. We describe an approach for speeding-up image-based simulation of multiphase flow in porous media based on curvelet transformations, which are specifically designed for processing of images that contain complex curved surfaces. Most porous media contain correlations in their morphology and, therefore, their images carry redundant information that, in the curvelet transform space, can be removed efficiently and accurately in order to obtain a coarser image with which the computations are far less intensive. We utilize the methodology to simulate two-phase flow of oil and water in two-dimensional digital images of sandstone and carbonate samples, and demonstrate that while the results with the curvelet-processed images are as accurate as those with the original ones, the computations are speeded up by a factor of 110–150. Thus, the methodology opens the way toward achieving the ultimate goal of simulation of multiphase flow in porous media, namely, making image-based computations a standard practice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Aljasmi, A., Sahimi, M.: Efficient image-based simulation of flow and transport in heterogeneous porous Media: Application of curvelet transforms. Geophys. Res. Lett. 47, e2019GL085671 (2020)

    Article  Google Scholar 

  • Al-Zubi, S., Islam, N., Abbod, M.: Multiresolution analysis using wavelet, ridgelet, and curvelet transforms for medical image segmentation. Int. J. Biomed. Imaging 2011, 136034 (2011)

    Google Scholar 

  • Arns, C.H., Knackstedt, M.A., Pinczewski, W.V., Garboczi, E.: Computation of linear elastic properties from microtomographic images: methodology and agreement between theory and experiment. Geophysics 67, 1348 (2002)

    Article  Google Scholar 

  • Arns, C.H., Knackstedt, M.A., Pinczewski, W.V., Lindquist, W.B.: Accurate computation of transport properties from microtomographic images. Geophys. Res. Lett. 28, 3361 (2001)

    Article  Google Scholar 

  • Aslannejad, H., Hassanizadeh, S.M.: Study of hydraulic properties of uncoated paper: image analysis and pore-scale modeling. Transp. Porous Media 120, 67 (2017)

    Article  Google Scholar 

  • Aslannejad, H., Hassanizadeh, S.M., Celia, M.A.: Characterization of the interface between coating and fibrous layers of paper. Transp. Porous Media 127, 143 (2019)

    Article  Google Scholar 

  • Babaei, M., King, P.R.: A comparison between wavelet and renormalization upscaling methods and iterative upscaling-downscaling scheme. SPE Reservoir Simul. Symp. 1, 469 (2011)

    Google Scholar 

  • Bakhshian, S., Shi, Z., Sahimi, M., Tsotsis, T.T., Jessen, K.: Image-based modeling of gas adsorption and swelling in high-pressure porous formations. Sci. Rep. 8, 8249 (2018)

    Article  Google Scholar 

  • Bear, J.: Dynamics of Fluids in Porous Media. Dover, Mineola (1972)

    Google Scholar 

  • Berg, S., Ott, H., Klapp, S.A., Schwing, A., Neiteler, R., Brussee, N., Makurat, A., Leu, L., Enzmann, F., Schwarz, J.-O., Kersten, M., Irvine, S., Stampanoni, M.: Real-time 3D imaging of Haines jumps in porous media flow. Proc. Natl. Acad. Sci. USA 110, 3755 (2013)

    Article  Google Scholar 

  • Blunt, M.J.: Effects of heterogeneity and wetting on relative permeability using pore level modeling. SPE J. 2, 70 (1997)

    Article  Google Scholar 

  • Blunt, M.J.: Multiphase Flow in Permeable Media: A Pore-Scale Perspective. Cambridge University Press, Cambridge (2017)

    Google Scholar 

  • Blunt, M.J., King, M.J., Scher, H.: Simulation and theory of two-phase flow in porous media. Phys. Rev. A 46, 7680 (1992)

    Article  Google Scholar 

  • Blunt, M.J., King, P.R.: Relative permeabilities from two- and three-dimensional pore-scale network modelling. Transp. Porous Media 6, 407 (1991)

    Article  Google Scholar 

  • Blunt, M.J., Scher, H.: Pore-level modeling of wetting. Phys. Rev. E 52, 6387 (1995)

    Article  Google Scholar 

  • Candés, E., Demanent, L., Donoho, D.L., Ying, L.: Fast discrete curvelet transforms. Multiscale Model. Simul. 5, 861 (2005)

    Article  Google Scholar 

  • Chandler, R., Koplik, J., Lerman, K., Willemsen, J.: Capillary displacement and percolation in porous media. J. Fluid Mech. 119, 249 (1982)

    Article  Google Scholar 

  • Dashtian, H., Sahimi, M.: Coherence index and curvelet transformation for denoising geophysical data. Phys. Rev. E 90, 042810 (2014)

    Article  Google Scholar 

  • Daubechies, I.: Orthonormal basis of compactly supported wavelets. Commun. Pure Appl. Math. 41, 901 (1988)

    Article  Google Scholar 

  • Daubechies, I.: Ten Lecture on Wavelets. SIAM, Philadelphia (1992)

    Book  Google Scholar 

  • Donoho, D.L.: Wedgelets: nearly minimax estimation of edges. Ann. Statist. 27, 859 (1999)

    Article  Google Scholar 

  • Ebrahimi, F.: Invasion percolation: A computational algorithm for complex phenomena. Comput. Sci. Eng. 12(2), 84 (2010)

    Article  Google Scholar 

  • Ebrahimi, F., Sahimi, M.: Multiresolution wavelet coarsening and analysis of transport in heterogeneous porous media. Phys. A 316, 160 (2002)

    Article  Google Scholar 

  • Ebrahimi, F., Sahimi, M.: Multiresolution wavelet scale up of unstable miscible displacements in flow through porous media. Transp. Porous Media 57, 75 (2004)

    Article  Google Scholar 

  • Francois, M.M., Cummins, S.J., Dendy, E.D., Kothe, D.B., Sicilian, J.M., Williams, M.M.: A balanced-force algorithm for continuous and sharp interfacial surface tension models within a volume tracking framework. J. Comput. Phys. 213, 141 (2006)

    Article  Google Scholar 

  • Friedlingstein, P., Solomon, S.: Contributions of past and present human generations to committed warming caused by carbon dioxide. Proc. Natl. Acad. Sci. USA 102, 10832 (2005)

    Article  Google Scholar 

  • Ghanbarian, B., Sahimi, M., Daigle, H.: Modeling relative permeability of water in soil: Application of effective-medium approximation and percolation theory. Water Resour. Res. 52, 5025 (2016)

    Article  Google Scholar 

  • Ghassemzadeh, J., Hashemi, M., Sartor, L., Sahimi, M.: Pore network simulation of fluid imbibition into paper during coating processes: I. Model development. AIChE J. 47, 519 (2001)

    Article  Google Scholar 

  • Ghassemzadeh, J., Sahimi, M.: Pore network simulation of fluid imbibition into paper during coating III: Modeling of the two-phase flow. Chem. Eng. Sci. 59, 2281 (2004)

    Article  Google Scholar 

  • Gueyffier, D., Li, J., Nadim, A., Scardovelli, R., Zaleski, S.: Volume-of-fluid interface tracking with smoothed surface stress methods for three-dimensional flows. J. Comput. Phys. 152, 423 (1999)

    Article  Google Scholar 

  • Heiba, A.A., Sahimi, M., Scriven, L.E., Davis, H.T.: Percolation theory of two-phase relative permeability. SPE Reservoir Eng. 7, 123 (1992)

    Article  Google Scholar 

  • Helmig, R., Schulz, P.: Multiphase Flow and Transport Processes in the Subsurface. Springer, Berlin (1997)

    Book  Google Scholar 

  • Herrmann, F.J., Wang, D., Hennenfent, G., Moghaddam, P.P.: Curvelet-based seismic data processing: A multiscale and nonlinear approach. Geophysics 73, A1 (2007)

    Article  Google Scholar 

  • Hunt, A.G., Sahimi, M.: Flow, transport, and reaction in porous media: Percolation scaling, critical-path analysis, and Effective-Medium Approximation. Rev. Geophys. 55, 993 (2017)

    Article  Google Scholar 

  • Iglauer, S., Favretto, S., Spinelli, G., Schena, G., Blunt, M.J.: X-ray tomography measurements of power-law cluster size distributions for the nonwetting phase in sandstones. Phys. Rev. E. 82, 056315 (2010)

    Article  Google Scholar 

  • Kantzas, A., Chatzis, I.: Network simulation of relative permeability curves using a bond correlated-site percolation model of pore structure. Chem. Eng. Commun. 69, 191 (1988)

    Article  Google Scholar 

  • Knackstedt, M.A., Sheppard, A.P., Sahimi, M.: Pore network modeling of two-phase flow in porous rock: The effect of correlated heterogeneity. Adv. Water Resour. 24, 257 (2001)

    Article  Google Scholar 

  • Kohanpur, A.H., Rahromostaqim, M., Valocchi, A.J., Sahimi, M.: Two-phase flow of CO\(_2\)-brine in a heterogeneous sandstone: characterization of the rock and comparison of the lattice-Boltzmann, pore-network, and direct numerical simulation methods. Adv. Water Resour. 135, 103439 (2020)

    Google Scholar 

  • Larson, R.G., Scriven, L.E., Davis, H.T.: Percolation theory of residual phases in porous media. Nature 268, 409 (1977)

    Article  Google Scholar 

  • Lemmens, H.J., Butcher, R., Botha, P.W.S.K.: FIB/SEM and SEM/EDX: a new dawn for the SEM in the core lab? Petrophysics 52, 452 (2011)

    Google Scholar 

  • Ma, J., Plonka, G.: Computing with curvelets: From image processing to turbulent flows. Comput. Sci. Eng. 11(2), 72 (2009)

    Article  Google Scholar 

  • Mallat, S.G.: A theory for multiresolution signal decomposition: the wavelet representation. IEEE Trans. Pattern Recog. Machine Intell. 11, 674 (1989)

    Article  Google Scholar 

  • Mallat, S.G.: Multiresolution approximations and wavelet orthonormal bases of \(L^2(R)\). Trans. Am. Math. Soc. 315, 69 (1989)

    Google Scholar 

  • Mehrabi, A.R., Sahimi, M.: Coarsening of heterogeneous media: application of wavelets. Phys. Rev. Lett. 79, 4385 (1997)

    Article  Google Scholar 

  • Neelamani, R., Baumstein, A.I., Gillard, D.G., Hadidi, M.T., Soroka, W.L.: Coherent and random noise attenuation using the curvelet transform. The Leading Edge 27, 129 (2008)

    Article  Google Scholar 

  • Nordbotten, J.M., Celia, M.A.: Geological Storage of CO\(_2\): Modeling Approaches for Large-Scale Simulation. Wiley, New York (2011)

    Book  Google Scholar 

  • Oak, M., Baker, L., Thomas, D.: Three-phase relative permeability of Berea sandstone. J. Pet. Technol. 42, 1054 (1990)

    Article  Google Scholar 

  • Olhede, S., Walden, A.T.: The Hilbert spectrum via wavelet projections. Proc. R. Soc. Lond. A 460, 955 (2004)

    Article  Google Scholar 

  • Pancaldi, V., Christensen, K., King, P.R.: Permeability up-scaling using Haar wavelets. Transp. Porous Media 67, 395 (2007)

    Article  Google Scholar 

  • Piri, M., Blunt, M.J.: Three-dimensional mixed-wet random pore-scale network modeling of two- and three-phase flow in porous media. I. Model description. Phys. Rev. E 71, 026301 (2005)

    Article  Google Scholar 

  • Piri, M., Blunt, M.J.: Three-dimensional mixed-wet random pore-scale network modeling of two- and three-phase flow in porous media. II. Results. Phys. Rev. E 71, 026302 (2005)

    Article  Google Scholar 

  • Porter, M.L., Wildenschild, D., Grant, G., Gerhard, J.I.: Measurement and prediction of the relationship between capillary pressure, saturation, and interfacial area in a NAPL-water-glass bead system. Water Resour. Res. 46, W08512 (2010)

    Article  Google Scholar 

  • Raeini, A.Q.: Modelling Multiphase Flow Through Micro-CT Images of the Pore Space, Ph.D. Thesis, Imperial College of London (2013)

  • Raeini, A.Q., Blunt, M.J., Bijeljic, B.: Modelling two-phase flow in porous media at the pore scale using the volume-of-fluid method. J. Comput. Phys. 231, 5653 (2012)

    Article  Google Scholar 

  • Raeini, A.Q., Blunt, M.J., Bijeljic, B.: Direct simulations of two-phase flow on micro-CT images of porous media and upscaling of pore-scale forces. Adv. Water Resour. 74, 116 (2014)

    Article  Google Scholar 

  • Rasaei, M.R., Sahimi, M.: Upscaling and simulation of waterflooding in heterogeneous reservoirs using wavelet transformations: Application to the SPE-10 model. Transp. Porous Media 72, 311 (2008)

    Article  Google Scholar 

  • Rasaei, M.R., Sahimi, M.: Upscaling of the permeability by multiscale wavelet transformations and simulation of multiphase flows in heterogeneous porous media. Comput. Geosci. 13, 187 (2009)

    Article  Google Scholar 

  • Rezapour, A., Ortega, A., Sahimi, M.: Upscaling of geological models of oil reservoirs with unstructured grids using lifting-based graph wavelet transforms. Transp. Porous Media 127, 661 (2019)

    Article  Google Scholar 

  • Sahimi, M.: Flow and Transport in Porous Media and Fractured Rock, 2nd edn. Wiley, Weinheim (2011)

    Book  Google Scholar 

  • Sahimi, M., Heiba, A.A., Davis, H.T., Scriven, L.E.: Dispersion in flow through porous media: II. Two-phase flow. Chem. Eng. Sci. 41, 2123 (1986)

    Article  Google Scholar 

  • Sankey, M.H., Holland, D.J., Sederman, A.J., Gladden, L.F.: Magnetic resonance velocity imaging of liquid and gas two-phase flow in packed beds. J. Magn. Reson. 196, 142 (2009)

    Article  Google Scholar 

  • Sheppard, S., Mantle, M.D., Sederman, A.J., Johns, M.L., Gladden, L.F.: Magnetic resonance imaging study of complex fluid flow in porous media: flow patterns and quantitative saturation profiling of amphiphilic fracturing fluid displacement in sandstone cores. Magn. Reson. Imaging. 21, 365 (2003)

    Article  Google Scholar 

  • Shokri, N.: Pore-scale dynamics of salt transport and distribution in drying porous media. Phys. Fluids 26, 012106 (2014)

    Article  Google Scholar 

  • Shokri, N., Lehmann, P., Or, D.: Characteristics of evaporation from partially-wettable porous media. Water Resour. Res. 45, W02415 (2009)

    Article  Google Scholar 

  • Shokri, N., Lehmann, P., Or, D.: Liquid phase continuity and solute concentration dynamics during evaporation from porous media—pore scale processes near vaporization surface. Phys. Rev. E 81, 046308 (2010)

    Article  Google Scholar 

  • Shokri, N., Sahimi, M., Or, D.: Morphology, propagation dynamics and scaling characteristics of drying fronts in porous media. Geophys. Res. Lett. 39, L09401 (2012)

    Article  Google Scholar 

  • Shokri-Kuehni, S.M.S., Vetter, T., Webb, C., Shokri, N.: New insights into saline water evaporation from porous media: complex interaction between evaporation rates, precipitation and surface temperature. Geophys. Res. Lett. 44, 5504 (2017)

    Article  Google Scholar 

  • Shokri-Kuehni, S.M.S., Norouzirad, M., Webb, C., Shokri, N.: Impact of type of salt and ambient conditions on saline water evaporation from porous media. Adv. Water Resour. 105, 154 (2017)

    Article  Google Scholar 

  • Shokri-Kuehni, S.M.S., Bergstad, M., Sahimi, M., Webb, C., Shokri, N.: Iodine k-edge dual energy imaging reveals the influence of particle size distribution on solute transport in drying porous media. Sci. Rep. 10, 10731 (2018)

    Article  Google Scholar 

  • Starck, J.-L., Candés, E.J., Donoho, D.L.: The curvelet transform for image denoising. IEEE Trans. Image Process. 11(6), 670 (2002)

    Article  Google Scholar 

  • Swerin, A.: Dimensional scaling of aqueous ink imbibition and inkjet printability on porous pigment coated paper A revisit. Ind. Eng. Chem. Res. 57, 49 (2018)

    Article  Google Scholar 

  • Tahmasebi, P., Sahimi, M., Kohanpur, A.H., Valocchi, A.J.: Pore-scale simulation of flow of CO\(_2\) and brine in reconstructed and actual 3D rock cores. J. Pet. Sci. Eng. 155, 21 (2017)

    Article  Google Scholar 

  • Ubink, O.: Numerical Prediction of Two Fluid Systems with Sharp Interfaces, Ph.D. Thesis, Imperial College of London (1997)

  • Wildenschild, D., Armstrong, R.T., Herring, A.L., Young, I., Young, I.M., Carey, J.W.: Exploring capillary trapping efficiency as a function of interfacial tension, viscosity, and flow rate. Energy Procedia 4, 4945 (2014)

    Article  Google Scholar 

  • Wilkinson, D., Willimsen, J.F.: Invasion percolation: a new form of percolation theory. J. Phys. A 16, 3365 (1983)

    Article  Google Scholar 

  • Woiselle, A., Starck, J.-L., Fadili, J.: 3D curvelet transforms and astronomical data restoration. Appl. Comput. Harmonic 28, 171 (2010)

    Article  Google Scholar 

  • Ying, L., Demanet, L., Candés, E.: 3D discrete curvelet transform. Proceedings of SPIE5914, Wavelets XI, 591413 (2005)

Download references

Acknowledgements

A.A. is grateful to the Public Authority for Applied Education and Training of Kuwait for a Ph.D. scholarship. This work was also supported in part by the National Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Sahimi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aljasmi, A., Sahimi, M. Speeding-up Simulation of Multiphase Flow in Digital Images of Heterogeneous Porous Media by Curvelet Transformation. Transp Porous Med 137, 215–232 (2021). https://doi.org/10.1007/s11242-021-01559-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-021-01559-5

Keywords

Navigation