Skip to main content
Log in

A New Model and its Application to Investigate Transpiration Cooling with Liquid Coolant Phase Change

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

This paper presents a new mathematical model, semi-mixing model (SMM), to describe transpiration cooling with coolant phase change from liquid into vapor through two-phase process. The local heat exchange of fluid-solid within pores is considered in this model, and therefore it is closer to real transpiration cooling condition. The differences from the separated phase model and two-phase mixture model are that SMM can overcome the trouble of tracking phase change interface and avoid the inveracious numerical phenomenon, i.e., a thermal insulating layer occurs within the porous matrix. Using SMM, the corresponding numerical method is realized to simulate the processes of coolant moving, absorbing heat and evaporating within porous matrix. To validate SMM and the numerical strategy, an experiment is conducted. Using the validated SMM and numerical strategy, the effects of two-dimensional coolant injection rate and two-dimensional heat flux on transpiration cooling characteristics are simulated and analyzed. The simulations and analysis discover several interesting and valuable phenomena.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Abbreviations

W :

Thickness of porous matrix, m

L :

Length of porous matrix, m

T :

Temperature, K

x, y :

Cartesian coordinate, m

q :

Heat flux, W m\(^{-2}\)

\(q_{sf}\) :

Fluid-to-solid heat transfer rate, W m\(^{-3}\)

m :

Mass flow rate per unit area, kg m\(^{-2}\) s\(^{-1}\)

\({m}'\) :

Interfacial mass transfer rate, kg m\(^{-3}\) s\(^{-1}\)

s :

Phase saturation

v :

Velocity vector

v \(^{\prime }\) :

Superficial or Darcian velocity vector

u,v:

Velocity components along x and y axes, m/s

p :

Pressure, Pa

g :

Gravity vector

K :

Permeability, m\(^{2}\)

H :

Specific enthalpy, J kg\(^{-1}\)

\(H_{lv}\) :

Latent heat of evaporation, J kg\(^{-1}\)

\(R_{g}\) :

Gas constant of air, J kg\(^{-1}\) K\(^{-1}\)

h :

Heat transfer coefficient, W m\(^{-2}\) K\(^{-1}\)

\(h_{sf}\) :

Fluid-to-solid heat transfer coefficient, W m\(^{-2}\) K\(^{-1}\)

k :

Thermal conductivity, W m\(^{-1}\) K\(^{-1}\)

\(d_{p}\) :

Particle diameter, m

Pr :

Prandtl number

Re :

Reynolds number

\(c_{p}\) :

Specific heat, J kg\(^{-1}\,\)K\(^{-1}\)

\(\rho \) :

Density, kg m\(^{-3}\)

\(\phi \) :

Porosity

\(\mu \) :

Dynamic viscosity, N s m\(^{-2}\)

\(\infty \) :

Hot air

c :

Coolant

l, v :

Liquid, vapor

i, f :

Fluid in different region

s :

Solid

0:

Reference

eff :

Effective

sat :

Saturated state

References

  • Abriola, L.M., Pinder, G.F.: A multiphase approach to the modeling of porous media contamination by organic compounds. 1. Equation development. Water Resour. Res. 21, 11–18 (1985)

    Article  Google Scholar 

  • Alazmi, B., Vafai, K.: Analysis of variable porosity, thermal dispersion, and local thermal nonequilibrium on free surface flows through porous media. J. Heat Transf. 126, 389–399 (2004)

    Article  Google Scholar 

  • Bau, H.H., Torrance, K.: Boiling in low-permeability porous materials. Int. J. Heat Mass Transf. 25, 45–55 (1982)

    Article  Google Scholar 

  • Bringedal, C., Berre, I., Pop, I.S., Radu, F.A.: A model for non-isothermal flow and mineral precipitation and dissolution in a thin strip. J. Comput. Appl. Math. 289(1), 346–355 (2015)

    Article  Google Scholar 

  • Bringedal, C., Berre, I., Pop, I.S., Radu, F.A.: Upscaling of nonisothermal reactive porous media flow under dominant Péclet number: the effect of changing porosity. Siam J. Multiscale Model. Simul. 14(1), 502–533 (2016)

    Article  Google Scholar 

  • Bringedal, C., Berre, I., Pop, I.S., Radu, F.A.: Upscaling of non-isothermal reactive porous media flow with changing porosity. Transp. Porous Media 114(2), 371–393 (2016)

    Article  Google Scholar 

  • Celia, M.A., Russell, T.F., Herrera, I., Ewing, R.E.: An Eulerian–Lagrangian localized adjoint method for the advection-diffusion equation. Adv. Water Resour. 13(4), 187–206 (1990)

    Article  Google Scholar 

  • Dhir, V.K.: Boiling and two-phase flow in porous media. Ann. Rev. Heat Transf. 5, 303–350 (1994)

    Article  Google Scholar 

  • Figus, C., Bray, Y.L., Bories, S., Prat, M.: Heat and mass transfer with phase change in a porous structure partially heated: continuum model and pore network simulations. Int. J. Heat Mass Transf. 42, 2557–2569 (1999)

    Article  Google Scholar 

  • Foreest, A.V., Sippel, M., Guelhan, A., Esser, B., Ambrosius, B.A.C., Sudmeijer, K.: Transpiration cooling using liquid water. J. Thermophys. Heat Transf. 23, 693–702 (2009)

    Article  Google Scholar 

  • He, F., Wang, J.H.: Modeling and simulation of transpiration cooling with phase change. Appl. Therm. Eng. 58, 173–180 (2013)

    Article  Google Scholar 

  • He, F., Wang, J.H.: Numerical investigation on critical heat flux and coolant volume required for transpiration cooling with phase change. Energy Convers. Manag. 80, 591–597 (2014)

    Article  Google Scholar 

  • Incropera, F.P., DeWitt, D.P., Bergman, T.L., Lavine, A.S.: Fundamentals of Heat and Mass Transfer, 7th edn, pp. 441–442. R.R. Donnelley, Jefferson City (2007)

    Google Scholar 

  • Leverett, M.C.: Capillary behavior in porous solids. Trans. AIME 142, 152–169 (1941)

    Article  Google Scholar 

  • Liu, W., Peng, S., Mizukami, K.: A general mathematical modelling for heat and mass transfer in unsaturated porous media: an application to free evaporative cooling. Heat Mass Transf. 31, 49–55 (1995)

    Article  Google Scholar 

  • Lehmann, F., Ackerer, P.: Comparison of iterative methods for improved solutions of the fluid flow equation in partially saturated porous media. Transp. Porous Media 31(3), 275–292 (1998)

    Article  Google Scholar 

  • Li, H.Y., Leong, K.C., Jin, L.W., Chai, J.C.: Transient two-phase flow and heat transfer with localized heating in porous media. Int. J. Therm. Sci. 49, 1115–1127 (2010)

    Article  Google Scholar 

  • List, F., Radu, F.A.: A study on iterative methods for solving Richards’ equation. Comput. Geosci. 20(2), 1–13 (2016)

    Article  Google Scholar 

  • Mhimid, A.: Theoretical study of heat and mass transfer in a zeolite bed during water desorption: validity of local thermal equilibrium assumption. Int. J Heat Mass Transf. 41, 2967–2977 (1998)

    Article  Google Scholar 

  • Maydanik, Y.F.: Loop heat pipes. Appl. Therm. Eng. 25, 635–657 (2005)

    Article  Google Scholar 

  • Patankar, Suhas, V.: Numerical Heat Transfer and Fluid flow, p. 64. Taylor & Francis, London (1980)

    Google Scholar 

  • Peterson, G.P., Chang, C.S.: Two-phase heat dissipation utilizing porous-channels of high-conductivity material. J. Heat Transf. Trans. ASME 120, 243–252 (1998)

    Article  Google Scholar 

  • Polezhaev, Y.V., Seliverstov, E.M.: A universal model of heat transfer in systems with penetration cooling. High Temp. 40, 856–864 (2002)

    Article  Google Scholar 

  • Shi, J.X., Wang, J.H.: Discussion of boundary conditions of transpiration cooling problems using analytical solution of LTNE model. J. Heat Transf. 130, 014504–5 (2008)

    Article  Google Scholar 

  • Shi, J.X., Wang, J.H.: A numerical investigation of transpiration cooling with liquid coolant phase change. Transp. Porous Media 87, 703–716 (2011)

    Article  Google Scholar 

  • Tambue, A., Berre, I., Nordbotten, J.M.: Efficient simulation of geothermal processes in heterogeneous porous media based on the exponential Rosenbrock–Euler and Rosenbrock-type methods. Adv. Water Resour. 53, 250–262 (2013)

    Article  Google Scholar 

  • Udell, K.S.: Heat transfer in porous media considering phase change and capillarity-the heat pipe effect. Int. J. Heat Mass Transf. 28, 485–495 (1985)

    Article  Google Scholar 

  • Vafai, K.: Handbook of Porous Media, 2nd edn, pp. 45–57. Taylor & Francis Group LLC, London (2005)

    Google Scholar 

  • Wang, C.Y., Beckermann, C.: A two-phase mixture model of liquid-gas flow and heat transfer in capillary porous media.1. Formulation. Int. J. Heat Mass Transf. 36, 2747–2758 (1993)

    Article  Google Scholar 

  • Wang, C.Y.: A fixed-grid numerical algorithm for two-phase flow and heat transfer in porous media. Numer. Heat Transf. Part B Fundam. Int. J. Comput. Methodol. 31, 85–105 (1997)

    Article  Google Scholar 

  • Wang, S., Utaka, Y., Tasaki, Y.: An experimental study on moisture transport through a porous plate with micro pores. Int. J. Heat Mass Transf. 52, 4386–4389 (2009)

    Article  Google Scholar 

  • Wan, Z.M., Liu, J., Wan, J.H., Tu, Z.K., Liu, W.: An overall numerical investigation on heat and mass transfer for miniature flat plate capillary pumped loop evaporation. Thermochim. Acta 518, 82–88 (2011)

    Article  Google Scholar 

  • Wei, K., Wang, J.H., Mao, M.: Model discussion of transpiration cooling with boiling. Transp. Porous Media 94, 303–318 (2012)

    Article  Google Scholar 

  • Xin, C.Y., Rao, Z.H.: Numerical investigation of vapor–liquid heat and mass transfer in porous media. Energy Convers. Manag. 78, 1–7 (2014)

    Article  Google Scholar 

  • Zhao, L.J., Wang, J.H.: An experimental investigation on transpiration cooling under supersonic condition using a nose cone model. Int. J. Therm. Sci. 84, 207–213 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the Natural Science Foundation of China (Contract No. 51376168). We also thank Prof. Bangcheng Ai, Dr. Nan Wu, Dr. Siyuan Chen and Dr. Xiaoguang Luo for providing professional opinions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianhua Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, W., Wang, J. A New Model and its Application to Investigate Transpiration Cooling with Liquid Coolant Phase Change. Transp Porous Med 122, 575–593 (2018). https://doi.org/10.1007/s11242-017-0963-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-017-0963-4

Keywords

Navigation