Advertisement

Transport in Porous Media

, Volume 122, Issue 3, pp 575–593 | Cite as

A New Model and its Application to Investigate Transpiration Cooling with Liquid Coolant Phase Change

  • Wenjie Dong
  • Jianhua Wang
Article
  • 114 Downloads

Abstract

This paper presents a new mathematical model, semi-mixing model (SMM), to describe transpiration cooling with coolant phase change from liquid into vapor through two-phase process. The local heat exchange of fluid-solid within pores is considered in this model, and therefore it is closer to real transpiration cooling condition. The differences from the separated phase model and two-phase mixture model are that SMM can overcome the trouble of tracking phase change interface and avoid the inveracious numerical phenomenon, i.e., a thermal insulating layer occurs within the porous matrix. Using SMM, the corresponding numerical method is realized to simulate the processes of coolant moving, absorbing heat and evaporating within porous matrix. To validate SMM and the numerical strategy, an experiment is conducted. Using the validated SMM and numerical strategy, the effects of two-dimensional coolant injection rate and two-dimensional heat flux on transpiration cooling characteristics are simulated and analyzed. The simulations and analysis discover several interesting and valuable phenomena.

Keywords

Modeling Two-dimensional Transpiration cooling Phase change Porous media 

List of symbols

W

Thickness of porous matrix, m

L

Length of porous matrix, m

T

Temperature, K

x, y

Cartesian coordinate, m

q

Heat flux, W m\(^{-2}\)

\(q_{sf}\)

Fluid-to-solid heat transfer rate, W m\(^{-3}\)

m

Mass flow rate per unit area, kg m\(^{-2}\) s\(^{-1}\)

\({m}'\)

Interfacial mass transfer rate, kg m\(^{-3}\) s\(^{-1}\)

s

Phase saturation

v

Velocity vector

v\(^{\prime }\)

Superficial or Darcian velocity vector

u,v

Velocity components along x and y axes, m/s

p

Pressure, Pa

g

Gravity vector

K

Permeability, m\(^{2}\)

H

Specific enthalpy, J kg\(^{-1}\)

\(H_{lv}\)

Latent heat of evaporation, J kg\(^{-1}\)

\(R_{g}\)

Gas constant of air, J kg\(^{-1}\) K\(^{-1}\)

h

Heat transfer coefficient, W m\(^{-2}\) K\(^{-1}\)

\(h_{sf}\)

Fluid-to-solid heat transfer coefficient, W m\(^{-2}\) K\(^{-1}\)

k

Thermal conductivity, W m\(^{-1}\) K\(^{-1}\)

\(d_{p}\)

Particle diameter, m

Pr

Prandtl number

Re

Reynolds number

\(c_{p}\)

Specific heat, J kg\(^{-1}\,\)K\(^{-1}\)

Greek Symbols

\(\rho \)

Density, kg m\(^{-3}\)

\(\phi \)

Porosity

\(\mu \)

Dynamic viscosity, N s m\(^{-2}\)

Subscripts

\(\infty \)

Hot air

c

Coolant

l, v

Liquid, vapor

i, f

Fluid in different region

s

Solid

0

Reference

eff

Effective

sat

Saturated state

Notes

Acknowledgements

This work is supported by the Natural Science Foundation of China (Contract No. 51376168). We also thank Prof. Bangcheng Ai, Dr. Nan Wu, Dr. Siyuan Chen and Dr. Xiaoguang Luo for providing professional opinions.

References

  1. Abriola, L.M., Pinder, G.F.: A multiphase approach to the modeling of porous media contamination by organic compounds. 1. Equation development. Water Resour. Res. 21, 11–18 (1985)CrossRefGoogle Scholar
  2. Alazmi, B., Vafai, K.: Analysis of variable porosity, thermal dispersion, and local thermal nonequilibrium on free surface flows through porous media. J. Heat Transf. 126, 389–399 (2004)CrossRefGoogle Scholar
  3. Bau, H.H., Torrance, K.: Boiling in low-permeability porous materials. Int. J. Heat Mass Transf. 25, 45–55 (1982)CrossRefGoogle Scholar
  4. Bringedal, C., Berre, I., Pop, I.S., Radu, F.A.: A model for non-isothermal flow and mineral precipitation and dissolution in a thin strip. J. Comput. Appl. Math. 289(1), 346–355 (2015)CrossRefGoogle Scholar
  5. Bringedal, C., Berre, I., Pop, I.S., Radu, F.A.: Upscaling of nonisothermal reactive porous media flow under dominant Péclet number: the effect of changing porosity. Siam J. Multiscale Model. Simul. 14(1), 502–533 (2016)CrossRefGoogle Scholar
  6. Bringedal, C., Berre, I., Pop, I.S., Radu, F.A.: Upscaling of non-isothermal reactive porous media flow with changing porosity. Transp. Porous Media 114(2), 371–393 (2016)CrossRefGoogle Scholar
  7. Celia, M.A., Russell, T.F., Herrera, I., Ewing, R.E.: An Eulerian–Lagrangian localized adjoint method for the advection-diffusion equation. Adv. Water Resour. 13(4), 187–206 (1990)CrossRefGoogle Scholar
  8. Dhir, V.K.: Boiling and two-phase flow in porous media. Ann. Rev. Heat Transf. 5, 303–350 (1994)CrossRefGoogle Scholar
  9. Figus, C., Bray, Y.L., Bories, S., Prat, M.: Heat and mass transfer with phase change in a porous structure partially heated: continuum model and pore network simulations. Int. J. Heat Mass Transf. 42, 2557–2569 (1999)CrossRefGoogle Scholar
  10. Foreest, A.V., Sippel, M., Guelhan, A., Esser, B., Ambrosius, B.A.C., Sudmeijer, K.: Transpiration cooling using liquid water. J. Thermophys. Heat Transf. 23, 693–702 (2009)CrossRefGoogle Scholar
  11. He, F., Wang, J.H.: Modeling and simulation of transpiration cooling with phase change. Appl. Therm. Eng. 58, 173–180 (2013)CrossRefGoogle Scholar
  12. He, F., Wang, J.H.: Numerical investigation on critical heat flux and coolant volume required for transpiration cooling with phase change. Energy Convers. Manag. 80, 591–597 (2014)CrossRefGoogle Scholar
  13. Incropera, F.P., DeWitt, D.P., Bergman, T.L., Lavine, A.S.: Fundamentals of Heat and Mass Transfer, 7th edn, pp. 441–442. R.R. Donnelley, Jefferson City (2007)Google Scholar
  14. Leverett, M.C.: Capillary behavior in porous solids. Trans. AIME 142, 152–169 (1941)CrossRefGoogle Scholar
  15. Liu, W., Peng, S., Mizukami, K.: A general mathematical modelling for heat and mass transfer in unsaturated porous media: an application to free evaporative cooling. Heat Mass Transf. 31, 49–55 (1995)CrossRefGoogle Scholar
  16. Lehmann, F., Ackerer, P.: Comparison of iterative methods for improved solutions of the fluid flow equation in partially saturated porous media. Transp. Porous Media 31(3), 275–292 (1998)CrossRefGoogle Scholar
  17. Li, H.Y., Leong, K.C., Jin, L.W., Chai, J.C.: Transient two-phase flow and heat transfer with localized heating in porous media. Int. J. Therm. Sci. 49, 1115–1127 (2010)CrossRefGoogle Scholar
  18. List, F., Radu, F.A.: A study on iterative methods for solving Richards’ equation. Comput. Geosci. 20(2), 1–13 (2016)CrossRefGoogle Scholar
  19. Mhimid, A.: Theoretical study of heat and mass transfer in a zeolite bed during water desorption: validity of local thermal equilibrium assumption. Int. J Heat Mass Transf. 41, 2967–2977 (1998)CrossRefGoogle Scholar
  20. Maydanik, Y.F.: Loop heat pipes. Appl. Therm. Eng. 25, 635–657 (2005)CrossRefGoogle Scholar
  21. Patankar, Suhas, V.: Numerical Heat Transfer and Fluid flow, p. 64. Taylor & Francis, London (1980)Google Scholar
  22. Peterson, G.P., Chang, C.S.: Two-phase heat dissipation utilizing porous-channels of high-conductivity material. J. Heat Transf. Trans. ASME 120, 243–252 (1998)CrossRefGoogle Scholar
  23. Polezhaev, Y.V., Seliverstov, E.M.: A universal model of heat transfer in systems with penetration cooling. High Temp. 40, 856–864 (2002)CrossRefGoogle Scholar
  24. Shi, J.X., Wang, J.H.: Discussion of boundary conditions of transpiration cooling problems using analytical solution of LTNE model. J. Heat Transf. 130, 014504–5 (2008)CrossRefGoogle Scholar
  25. Shi, J.X., Wang, J.H.: A numerical investigation of transpiration cooling with liquid coolant phase change. Transp. Porous Media 87, 703–716 (2011)CrossRefGoogle Scholar
  26. Tambue, A., Berre, I., Nordbotten, J.M.: Efficient simulation of geothermal processes in heterogeneous porous media based on the exponential Rosenbrock–Euler and Rosenbrock-type methods. Adv. Water Resour. 53, 250–262 (2013)CrossRefGoogle Scholar
  27. Udell, K.S.: Heat transfer in porous media considering phase change and capillarity-the heat pipe effect. Int. J. Heat Mass Transf. 28, 485–495 (1985)CrossRefGoogle Scholar
  28. Vafai, K.: Handbook of Porous Media, 2nd edn, pp. 45–57. Taylor & Francis Group LLC, London (2005)Google Scholar
  29. Wang, C.Y., Beckermann, C.: A two-phase mixture model of liquid-gas flow and heat transfer in capillary porous media.1. Formulation. Int. J. Heat Mass Transf. 36, 2747–2758 (1993)CrossRefGoogle Scholar
  30. Wang, C.Y.: A fixed-grid numerical algorithm for two-phase flow and heat transfer in porous media. Numer. Heat Transf. Part B Fundam. Int. J. Comput. Methodol. 31, 85–105 (1997)CrossRefGoogle Scholar
  31. Wang, S., Utaka, Y., Tasaki, Y.: An experimental study on moisture transport through a porous plate with micro pores. Int. J. Heat Mass Transf. 52, 4386–4389 (2009)CrossRefGoogle Scholar
  32. Wan, Z.M., Liu, J., Wan, J.H., Tu, Z.K., Liu, W.: An overall numerical investigation on heat and mass transfer for miniature flat plate capillary pumped loop evaporation. Thermochim. Acta 518, 82–88 (2011)CrossRefGoogle Scholar
  33. Wei, K., Wang, J.H., Mao, M.: Model discussion of transpiration cooling with boiling. Transp. Porous Media 94, 303–318 (2012)CrossRefGoogle Scholar
  34. Xin, C.Y., Rao, Z.H.: Numerical investigation of vapor–liquid heat and mass transfer in porous media. Energy Convers. Manag. 78, 1–7 (2014)CrossRefGoogle Scholar
  35. Zhao, L.J., Wang, J.H.: An experimental investigation on transpiration cooling under supersonic condition using a nose cone model. Int. J. Therm. Sci. 84, 207–213 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Thermal Science and Energy EngineeringUniversity of Science and Technology of ChinaHefeiPeople’s Republic of China

Personalised recommendations