Skip to main content
Log in

Violations of betweenness and choice shifts in groups

  • Published:
Theory and Decision Aims and scope Submit manuscript

Abstract

In decision theory, the betweenness axiom postulates that a decision maker who chooses an alternative A over another alternative B must also choose any probability mixture of A and B over B itself and can never choose a probability mixture of A and B over A itself. The betweenness axiom is a weaker version of the independence axiom of expected utility theory. Numerous empirical studies documented systematic violations of the betweenness axiom in revealed individual choice under uncertainty. This paper shows that these systematic violations can be linked to another behavioral regularity—choice shifts in a group decision making. Choice shifts are observed if an individual faces the same decision problem but makes a different choice when deciding alone and in a group.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. Despite the fact that group decision-making is ubiquitous in social and economic life, economists have been a long time silent on this subject. It can be related to the literature on household behavior that attempts to model households as collective decision units (cf. Bourguignon and Chiappori 1992).

  2. A traditional explanation for a risky shift is the "diffusion of responsibility" when decisions are taken within a group [e.g., Wallach et al (1962, 1964)]. Specifically, an individual choosing a relatively risky option may experience an ex post regret/guilt and this feeling is diluted within group-decision making.

References

  • Abdellaoui, M. (2002). A genuine rank-dependent generalization of the von Neumann–Morgenstern expected utility theorem. Econometrica, 70(2), 717–736.

    Article  Google Scholar 

  • Allais, M. (1953). Le Comportement de l’Homme Rationnel devant le Risque: Critique des Postulates et Axiomes de l’Ecole Américaine. Econometrica, 21, 503–546.

    Article  Google Scholar 

  • Baker, R. J., Laury, S. K., & Williams, A. W. (2008). Comparing small-group and individual behavior in lottery-choice experiments. Southern Economic Journal, 75(2), 367–382.

    Google Scholar 

  • Bateman, I., & Munro, A. (2005). An experiment on risky choice amongst households. Economic Journal, 115, C176–C189.

    Article  Google Scholar 

  • Becker, G., DeGroot, M., & Marschak, J. (1963). An experimental study of some stochastic models for wagers. Behavioral Studies, 3, 199–202.

    Google Scholar 

  • Bernasconi, M. (1994). Nonlinear preference and two-stage lotteries: theories and evidence. Economic Journal, 104, 54–70.

    Article  Google Scholar 

  • Blavatskyy, P. (2006). Violations of betweenness or random errors? Economics Letters, 91, 34–38.

    Article  Google Scholar 

  • Blavatskyy, P. (2013a). Which decision theory? Economics Letters, 120(1), 40–44.

    Article  Google Scholar 

  • Blavatskyy, P. (2013b). Reverse Allais paradox. Economics Letters, 119(1), 60–64.

    Article  Google Scholar 

  • Bone, J., Hey, J., & Suckling, J. (1999). Are groups more (or less) consistent than individuals? Journal of Risk and Uncertainty, 8, 63–81.

    Article  Google Scholar 

  • Bourguignon, F., & Chiappori, P.-A. (1992). Collective models of household behavior. European Economic Review, 36, 355–364.

    Article  Google Scholar 

  • Camerer, C. (1989). An experimental test of several generalized utility theories. Journal of Risk and Uncertainty, 2, 61–104.

    Article  Google Scholar 

  • Camerer, C., & Ho, T. (1994). Violations of the betweenness axiom and nonlinearity in probability. Journal of Risk and Uncertainty, 8, 167–196.

    Article  Google Scholar 

  • Chew, S. (1983). A generalization of the quasilinear mean with applications to the measurement of income inequality and decision theory resolving the Allais paradox. Econometrica, 51, 1065–1092.

    Article  Google Scholar 

  • Chew, S.-H., & Waller, W. (1986). Empirical tests of weighted utility theory. Journal of Mathematical Psychology, 30, 55–72.

    Article  Google Scholar 

  • Conlisk, J. (1987). Verifying the betweenness axiom with questionnaire evidence, or not: take your pick. Economics Letters, 25, 319–322.

    Article  Google Scholar 

  • Crawford, V. (1990). Equilibrium without independence. Journal of Economic Theory, 50, 127–154.

    Article  Google Scholar 

  • Davis, J. H., Kameda, T., & Stasson, M. F. (1992). Group risk taking: Selected topics. In J. F. Yates (Ed.), Risk-taking behavior (pp. 163–181). New York: John Wiley & Sons.

    Google Scholar 

  • Dekel, E. (1986). An axiomatic characterization of preferences under uncertainty. Journal of Economic Theory, 40, 304–318.

    Article  Google Scholar 

  • Eliaz, K., Ray, D., & Razin, R. (2006). Choice shift in groups: A decision—theoretic basis. The American Economic Review, 96(4), 1321–1332.

    Article  Google Scholar 

  • Gigliotti, G., & Sopher, B. (1993). A test of generalized expected utility theory. Theory and Decision, 35, 75–106.

    Article  Google Scholar 

  • Gul, F. (1991). A theory of disappointment aversion. Econometrica, 59, 667–686.

    Article  Google Scholar 

  • Harrison, G. W., Lau, M. I., Elisabet Rutström, E., & Tarazona-Gómez, M. (2013). Preferences over social risk. Oxford Economic Papers, 65(1), 25–46.

    Article  Google Scholar 

  • Kahneman, D., & Tversky, A. (1979). Prospect theory: An analysis of decision under risk. Econometrica, 47, 263–291.

    Article  Google Scholar 

  • Kerr, N. L., MacCoun, R. J., & Kramer, G. P. (1996). Bias in judgement: comparing individuals and groups. Psychological Review, 103, 687–719.

    Article  Google Scholar 

  • Machina, M. (1982). “Expected utility” analysis without the independence axiom. Econometrica, 50(2), 277–324.

    Article  Google Scholar 

  • Masclet, D., Loheac, Y., Laurent, D., & Colombier, N. (2009). Group and individual risk preferences: A lottery-choice experiment. Journal of Economic Behavior & Organization, 70, 470–484.

    Article  Google Scholar 

  • Nordhoy, F. (1962). Group interaction in decision-making under risk. Unpublished Paper

  • Prelec, D. (1990). A ‘pseudo-endowment’ effect, and its implications for some recent nonexpected utility models. Journal of Risk and Uncertainty, 3, 247–259.

    Article  Google Scholar 

  • Quiggin, J. (1981). Risk perception and risk aversion among Australian farmers. Australian Journal of Agricultural Recourse Economics, 25, 160–169.

    Article  Google Scholar 

  • Rockenbach, B., Sadrieh, A., & Mathauschek, B. (2007). Teams take the better risks. Journal of Economic Behavior and Organisation, 63, 412–422.

    Article  Google Scholar 

  • Shupp, R., & Williams, A. W. (2008). Risk preference differentials of small groups and individuals. The Economic Journal, 118, 258–283.

    Article  Google Scholar 

  • Starmer, C. H. (2000). Developments in non-expected utility theory: the hunt for a descriptive theory of choice under risk. Journal of Economic Literature, 38, 332–382.

    Article  Google Scholar 

  • Stoner, J. A. F. (1961). A comparison of individual individual and group decisions involving risk. Unpublished Paper

  • Stoner, J. A. F. (1968). Risky and cautious shifts in group decisions. Journal of Experimental Social Psychology, 4(4), 442–459.

    Article  Google Scholar 

  • Tversky, A., & Kahneman, D. (1992). Advances in prospect theory: Cumulative representation of uncertainty. Journal of Risk and Uncertainty, 5, 297–323.

    Article  Google Scholar 

  • Wakker, P. (2010). Prospect theory: for risk and ambiguity. Cambridge: Cambridge UP.

    Book  Google Scholar 

  • Wallach, M. A., Kogan, N., & Bem, D. J. (1962). Group influence on individual risk-taking. Journal of Abnormal and Social Psychology, 65, 75–86.

    Article  Google Scholar 

  • Wallach, M. A., Kogan, N., & Bem, D. J. (1964). Diffusion of responsibility and level of risk-taking in groups. Journal of Abnormal and Social Psychology, 68, 263–274.

    Article  Google Scholar 

  • Wu, G., & Gonzalez, R. (1996). Curvature of the probability weighting function. Management Science, 42, 1676–1690.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pavlo R. Blavatskyy.

Appendix

Appendix

Proof of Theorem 1

We prove first that part 1 of the theorem implies part 2.

Notice that \( p_{s} = \left( {1 - a} \right)b + a > \left( {1 - a} \right)b = p_{r} \). Since \( \bar{p}\left[ \varvec{s} \right] + \left( {1 - \bar{p}} \right)\left[ \varvec{r} \right] \sim \varvec{s,} \) then by setting \( \alpha = \bar{p} \), \( \beta = p \) and \( \gamma = 1 \) in part (a) of Assumption 1 we immediately obtain that mixture \( p\left[ \varvec{s} \right] + \left( {1 - p} \right)\left[ \varvec{r} \right] \) is strictly preferred over \( \varvec{s } \quad {\text{for all}} p \in (\bar{p},1) \). Since \( \bar{p}\left[ \varvec{s} \right] + \left( {1 - \bar{p}} \right)\left[ \varvec{r} \right] \sim \varvec{r} \) then part (b) of Assumption 1 implies that \( p\left[ \varvec{s} \right] + \left( {1 - p} \right)\left[ \varvec{r} \right] \prec \varvec{r }\quad {\text{for all }}p \in (0,\bar{p}) \). Thus, if \( p_{s} > \bar{p} > p_{r} , \) then we must have \( \varvec{s}^{\varvec{*}} \succ \varvec{s} \sim \varvec{r} \succ \varvec{r}^{\varvec{*}} \) and an individual exhibits a cautious shift. This evidence proves statement (b) iv. Therefore, an individual can exhibit a risky shift only in two cases: either when \( \bar{p} \ge p_{s} > p_{r} \) or when \( p_{s} > p_{r} \ge \bar{p} \).

Consider first the case when \( \bar{p} \ge p_{s} > p_{r} \). Since \( p_{s} = p_{r} + a, \) then this case is only possible when \( a \le \bar{p} \). According to part (b) of Assumption 1, an individual has strictly quasi-convex preferences on the interval \( \left[ {0,\bar{p}} \right], \) i.e. for all for \( 0 \le \alpha < \beta < \gamma \le \bar{p} \), the best of \( \alpha \left[ \varvec{s} \right] + \left( {1 - \alpha } \right)\left[ \varvec{r} \right] \) and \( \gamma \left[ \varvec{s} \right] + \left( {1 - \gamma } \right)\left[ \varvec{r} \right] \) is strictly preferred over mixture \( \beta \left[ \varvec{s} \right] + \left( {1 - \beta } \right)\left[ \varvec{r} \right] \). Quasi-convexity implies that the set \( L = \left\{ {p \in \left[ {0,\bar{p}} \right]:s^{*} { \succcurlyeq }p\left[ s \right] + \left( {1 - p} \right)[r]} \right\} \) is convex, i.e. an interval. Moreover, since \( \varvec{s}^{\varvec{*}} { \succcurlyeq }\varvec{s}^{\varvec{*}} \) then this interval L must contain probability \( p_{s} \). More specifically, interval L must be of the form either \( \left[ {c, p_{s} } \right] \) or \( \left[ {p_{s} , c} \right] \) for some threshold \( c \in [0,\bar{p}) \). An individual then exhibits a risky shift \( \varvec{r}^{\varvec{*}} \succ \varvec{s}^{\varvec{*}} \) if and only if \( p_{r} \in \left[ {0, { \hbox{max} }\{ c, p_{s} \} } \right]\backslash L \), which is an interval of the form \( [0,{ \hbox{min} }\{ c, p_{s} \} ) \), for some threshold \( c \in [0,\bar{p}) \). Thus, an individual exhibits a risky shift when \( a \le \bar{p} \) and \( p_{r} < { \hbox{min} }\{ c, p_{s} \} \). The latter inequality can be rewritten as \( p_{r} = \left( {1 - a} \right)b < { \hbox{min} }\{ c, p_{s} \} \) or \( b < { \hbox{min} }\{ c, p_{s} \} /\left( {1 - a} \right) \equiv b_{1} \left( a \right) \). This evidence proves part (a) i. and (b) i. of the theorem.

Now consider the second case when \( p_{s} > p_{r} \ge \bar{p} \). Since \( p_{s} = p_{r} + a \) then this case is only possible when \( a \le 1 - \bar{p} \). According to part (a) of Assumption 1, an individual has strictly quasi-concave preferences on the interval \( \left[ {\bar{p},1} \right] \), i.e. for all \( \bar{p} \le \alpha < \beta < \gamma \le 1 \), mixture \( \beta \left[ \varvec{s} \right] + \left( {1 - \beta } \right)\left[ \varvec{r} \right] \) is strictly preferred over the worst of \( \alpha \left[ \varvec{s} \right] + \left( {1 - \alpha } \right)\left[ \varvec{r} \right] \) and \( \gamma \left[ \varvec{s} \right] + \left( {1 - \gamma } \right)\left[ \varvec{r} \right] \). Quasi-concavity implies that the set \( U = \left\{ {p \in \left[ {\bar{p},1} \right]:p\left[ s \right] + \left( {1 - p} \right)[r]{ \succcurlyeq }r^{*} } \right\} \) is convex, i.e. an interval. Since \( \varvec{r}^{\varvec{*}} { \succcurlyeq }\varvec{r}^{\varvec{*}} \) then this interval U must contain probability \( p_{r} \). More specifically, interval U must be of the form either \( \left[ { p_{r} ,d} \right] \) or \( \left[ {d, p_{r} } \right] \) for some threshold \( d \in \left[ {\bar{p},1} \right]. \) An individual then exhibits a risky shift \( \varvec{r}^{\varvec{*}} \succ \varvec{s}^{\varvec{*}} \) if and only if \( p_{s} \in \left[ { { \hbox{min} }\{ d, p_{r} \} ,1} \right]\backslash U \), which is an interval of the form \( ({ \hbox{max} }\{ d, p_{r} \} ,1] \), for some threshold \( d \in \left[ {\bar{p},1} \right] \). Thus, an individual exhibits a risky shift if \( a \le 1 - \bar{p} \) and \( p_{s} > { \hbox{max} }\{ d, p_{r} \} \). The latter inequality can be rewritten as \( p_{s} = \left( {1 - a} \right)b + a > { \hbox{max} }\{ d, p_{r} \} \) or \( b > ({ \hbox{max} }\{ d, p_{r} \} - a)/\left( {1 - a} \right) \equiv b_{2} \left( a \right) \). This evidence proves part (a) ii. and (b) ii. of the theorem.

To finish the proof that part 1 implies part 2 we need to show that \( b_{2} \left( a \right) > b_{1} \left( a \right) \). Fix a value of \( a \) s.t. \( a < \bar{p} \) and \( a < 1 - \bar{p} \). First note that \( r^{*} \sim s^{*} \) can happen only in two cases: \( \bar{p} \ge p_{s} > p_{r} \) and \( p_{s} > p_{r} \ge \bar{p} \). When \( \bar{p} \ge p_{s} > p_{r} \) we observe the risk shift only for all \( b < b_{1} \left( a \right) \) and for \( b = b_{1} \left( a \right) \) we have that \( r^{*} \sim s^{*} \). Note that in this case we have \( p_{r} = \left( {1 - a} \right)b_{1} \left( a \right) \) so that inequality \( \bar{p} > p_{r} \) can be rewritten as:

$$ \bar{p} > \left( {1 - a} \right)b_{1} \left( a \right) $$
(1)

When \( p_{s} > p_{r} > \bar{p} \) we observe the risk shift only for all \( b > b_{2} \left( a \right) \) and for \( b = b_{2} \left( a \right) \) we have that \( r^{*} \sim s^{*} \). Note that in this case we have \( p_{r} = \left( {1 - a} \right)b_{2} \left( a \right) \) so that inequality \( p_{r} > \bar{p} \) can be rewritten as:

$$ \left( {1 - a} \right)b_{2} \left( a \right) > \bar{p} $$
(2)

Inequalities (1) and (2) can hold simultaneously only if \( b_{2} \left( a \right) > b_{1} \left( a \right) \). Finally we have to consider the cases in which either \( a \le \bar{p} \) or \( a \le 1 - \bar{p} \) or both are not satisfied. Note that \( a \le \bar{p} \) implies \( 0 < b_{1} \left( a \right) < 1 \) and \( a \le 1 - \bar{p} \) implies \( 0 < b_{2} \left( a \right) < 1 \). Suppose that \( a \ge \bar{p} \) in this case \( b_{1} \left( a \right) = 0 \). Suppose that \( a \ge 1 - \bar{p} \) in this case \( b_{2} \left( a \right) = 1 \). Then \( b_{2} \left( a \right) > b_{1} \left( a \right) \) holds for all possible values of \( a \). This evidence together with the previous ones proves b) iii. of the theorem.

Now we prove that part 2 of the theorem implies part 1.

We claim that the part 2 of the theorem implies \( p\left[ \varvec{s} \right] + \left( {1 - p} \right)\left[ \varvec{r} \right] \succ \varvec{r }\forall p \in \left( {\bar{p},1} \right) \) and \( p\left[ \varvec{s} \right] + \left( {1 - p} \right)\left[ \varvec{r} \right] \prec \varvec{r }\forall p \in \left( {0, \bar{p}} \right) \). Consider an individual who is indifferent between \( \varvec{s} \) and \( \varvec{r} \). Assume \( \bar{p} < a < 1 \). In this case, when \( b = 0 \), part 2 of the theorem implies a cautious shift, i.e. \( \varvec{s}^{\varvec{*}} \succ \varvec{r}^{\varvec{*}} \), \( \forall a \in \left( {\bar{p}, 1} \right) \). Note that for \( b = 0 \), \( \varvec{r}^{\varvec{*}} = \varvec{r} \). By contradiction, suppose that there exists a value \( p^{*} \in (\bar{p},1) \) such that \( p^{*} \left[ \varvec{s} \right] + \left( {1 - p^{*} } \right)\left[ \varvec{r} \right]{ \preccurlyeq }\varvec{r } \) and \( p^{*} \left[ \varvec{s} \right] + \left( {1 - p^{*} } \right)\left[ \varvec{r} \right]{ \preccurlyeq }\varvec{s}. \) Suppose \( b = 0 \) and \( a = p^{*} > \bar{p} \). In such a case \( \varvec{r}^{\varvec{*}} = \left[ \varvec{r} \right] \) and \( \varvec{s}^{\varvec{*}} = p^{*} \left[ \varvec{s} \right] + \left( {1 - p^{*} } \right)\left[ \varvec{r} \right] \). By initial assumption we have then \( \varvec{r}^{\varvec{*}} { \succcurlyeq }\varvec{s}^{\varvec{*}} \), which contradicts part 2 of the theorem, that in such case states \( \varvec{s}^{\varvec{*}} \succ \varvec{r}^{\varvec{*}} \).

Assume \( 1 - \bar{p} < a < 1 \). In this case, when \( b = 1 \), part 2 of the theorem implies a cautious shift, i.e. \( \varvec{s}^{\varvec{*}} \succ \varvec{r}^{\varvec{*}} \), \( \forall a \in \left( {1 - \bar{p}, 1} \right) \). Note that for \( b = 1 \), \( \varvec{s}^{\varvec{*}} = \varvec{s} \). By contradiction, suppose that there exists a value \( p^{*} \in (0, \bar{p}) \) such that \( p^{*} \left[ \varvec{s} \right] + \left( {1 - p^{*} } \right)\left[ \varvec{r} \right]{ \succcurlyeq }\varvec{r } \) and \( p^{*} \left[ \varvec{s} \right] + \left( {1 - p^{*} } \right)\left[ \varvec{r} \right]{ \succcurlyeq }\varvec{s}. \) Suppose \( b = 1 \) and \( a = 1 - p^{*} > 1 - \bar{p} \). In such a case \( \varvec{s}^{\varvec{*}} = \left[ \varvec{s} \right] \) and \( \varvec{r}^{\varvec{*}} = p^{*} \left[ \varvec{s} \right] + \left( {1 - p^{*} } \right)\left[ \varvec{r} \right] \). By initial assumption we have then \( \varvec{r}^{\varvec{*}} { \succcurlyeq }\varvec{s}^{\varvec{*}} \), which contradicts part 2 of the theorem, that in such case states \( \varvec{s}^{\varvec{*}} \succ \varvec{r}^{\varvec{*}} \). The evidences above prove our claim.

Now we claim that the theorem implies the existence of \( \bar{p} \in \left[ {0, 1} \right] \) such that \( \varvec{s} \sim \varvec{r} \sim \bar{p}\left[ \varvec{s} \right] + \left( {1 - \bar{p}} \right)\left[ \varvec{r} \right] \). Assume an individual who is indifferent between \( \varvec{s} \) and \( \varvec{r} \). Consider the set \( U = \left\{ {p\left[ s \right] + \left( {1 - p} \right)\left[ r \right]: p\left[ s \right] + \left( {1 - p} \right)\left[ r \right]{ \succcurlyeq }\varvec{r}} \right\} \). Using the above considerations for \( \bar{p} < a < 1 \) we can state that this set is closed only if lottery \( \bar{p}\left[ s \right] + \left( {1 - \bar{p}} \right)\left[ r \right]{ \succcurlyeq }\varvec{r} \). Consider the set of \( L = \left\{ {p\left[ s \right] + \left( {1 - p} \right)\left[ r \right]: \varvec{s}{ \succcurlyeq }p\left[ s \right] + \left( {1 - p} \right)\left[ r \right]} \right\} \). Using the above considerations for \( 1 - \bar{p} < a < 1 \) we can state that this set is closed only if lottery \( \varvec{s}{ \succcurlyeq }\bar{p}\left[ s \right] + \left( {1 - \bar{p}} \right)\left[ r \right] \). Continuity of preferences implies that sets \( L \) and \( U \) are closed that happen only if \( s \sim r \sim \bar{p}\left[ s \right] + \left( {1 - \bar{p}} \right)\left[ r \right] \).

Now we show that statement part 2 of the theorem implies that preferences are quasi-concave for \( p > \bar{p} \) and quasi-convex for \( p < \bar{p} \). By definition of quasi-concavity preferences are strictly quasi-concave for \( p \in \left[ {\bar{p}, 1} \right] \) if and only if are single-peaked on this interval. Suppose preferences are not quasi-concave for \( p > \bar{p}, \) i.e. there exist probabilities \( p,q \in \left[ {\bar{p}, 1} \right] \), \( p \ne q \), such that \( p\left[ \varvec{s} \right] + \left( {1 - p} \right)\left[ \varvec{r} \right]\sim q\left[ \varvec{s} \right] + \left( {1 - q} \right)\left[ \varvec{r} \right] \) and for some \( \alpha \in \left( {0, 1} \right) \) \( \left( {\alpha \cdot p + \left( {1 - \alpha } \right) \cdot q} \right)\left[ \varvec{s} \right] + \left( {1 - \alpha \cdot p - \left( {1 - \alpha } \right) \cdot q} \right)\left[ \varvec{r} \right]{ \preccurlyeq }p\left[ \varvec{s} \right] + \left( {1 - p} \right)\left[ \varvec{r} \right] \). It follows that preferences are not single peaked in \( p \in \left[ {\bar{p}, 1} \right] \) and therefore there are either (1) at least two separated intervals on \( p \) where is possible to find a value of \( a < 1 - \bar{p} \) such that \( s^{*} \succ r^{*} \) or (2) an interval on \( p \) where is possible to find a value of \( a < 1 - \bar{p} \) such that \( s^{*} \sim r^{*} \). In both case a violation of the part 2 of the theorem.

Using the similar arguments we can prove that part 2 of the theorem implies strictly quasi-convex preferences for \( p < \bar{p} \).

\( {\square } \).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Blavatskyy, P.R., Feri, F. Violations of betweenness and choice shifts in groups. Theory Decis 85, 321–331 (2018). https://doi.org/10.1007/s11238-018-9664-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11238-018-9664-x

Keywords

Navigation