Skip to main content
Log in

Automated Identification of Coronal Holes from Synoptic EUV Maps

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

Coronal holes (CHs) are regions of open magnetic field lines in the solar corona and the source of the fast solar wind. Understanding the evolution of coronal holes is critical for solar magnetism as well as for accurate space weather forecasts. We study the extreme ultraviolet (EUV) synoptic maps at three wavelengths (195 Å/193 Å, 171 Å and 304 Å) measured by the Solar and Heliospheric Observatory/Extreme Ultraviolet Imaging Telescope (SOHO/EIT) and the Solar Dynamics Observatory/Atmospheric Imaging Assembly (SDO/AIA) instruments. The two datasets are first homogenized by scaling the SDO/AIA data to the SOHO/EIT level by means of histogram equalization. We then develop a novel automated method to identify CHs from these homogenized maps by determining the intensity threshold of CH regions separately for each synoptic map. This is done by identifying the best location and size of an image segment, which optimally contains portions of coronal holes and the surrounding quiet Sun allowing us to detect the momentary intensity threshold. Our method is thus able to adjust itself to the changing scale size of coronal holes and to temporally varying intensities. To make full use of the information in the three wavelengths we construct a composite CH distribution, which is more robust than distributions based on one wavelength. Using the composite CH dataset we discuss the temporal evolution of CHs during the Solar Cycles 23 and 24.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13

Similar content being viewed by others

Notes

  1. After completing the analysis discussed in this article, it came to our knowledge that the Space Weather Lab synoptic maps, whose pixel values appeared to represent logarithmic pixel intensity in the numerical range from 0 to 255, correspond to 8-bit color table pixel values of the map used to plot the images (Karna, 2017, private communication). The erroneous synoptic maps have been in the public server for several years, and they have been used in a few publications, but have recently (November 2017) been corrected. Fortunately, the map used was monochromatic so that the color table values are proportional to the real pixel intensity. Thus, this is not a problem for the novel CH detection method presented in this article, which relies on contrasts between pixel values. However, a more significant problem might occur that can be related to the fact that the color table values clip the real pixel values below (above) the lower (upper) threshold. This clipping of pixel values is clearly seen in the SDO/AIA histograms of Figure 1.

References

  • Abramenko, V., Yurchyshyn, V., Watanabe, H.: 2009, Parameters of the magnetic flux inside coronal holes. Solar Phys. 260(1), 43. DOI .

    Article  ADS  Google Scholar 

  • Asikainen, T., Ruopsa, M.: 2016, Solar wind drivers of energetic electron precipitation. J. Geophys. Res. 121(3), 2209. DOI .

    Article  Google Scholar 

  • Barra, V., Delouille, V., Kretzschmar, M., Hochedez, J.-F.: 2009, Fast and robust segmentation of solar EUV images: Algorithm and results for solar cycle 23. Astron. Astrophys. 505(1), 361. DOI .

    Article  ADS  Google Scholar 

  • Belkasim, S., Ghazal, A., Basir, O.A.: 2003, Phase-based optimal image thresholding. Digit. Signal Process. 13(4), 636. DOI .

    Article  Google Scholar 

  • Benevolenskaya, E.E., Kosovichev, A.G., Scherrer, P.H.: 2001, Detection of high-latitude waves of solar coronal activity in extreme-ultraviolet data from the solar and heliospheric observatory EUV imaging telescope. Astrophys. J. 554, L107. DOI .

    Article  ADS  Google Scholar 

  • Boerner, P.F., Testa, P., Warren, H., Weber, M.A., Schrijver, C.J.: 2014, Photometric and thermal cross-calibration of solar EUV instruments. Solar Phys. 289(6), 2377. DOI .

    Article  ADS  Google Scholar 

  • Caplan, R.M., Downs, C., Linker, J.A.: 2016, Synchronic coronal hole mapping using multi-instrument EUV images: Data preparation and detection method. Astrophys. J. 823(1), 53. DOI .

    Article  ADS  Google Scholar 

  • Cranmer, S.R.: 2009, Coronal holes. Living Rev. Solar Phys. 6(3), 14. DOI .

    Google Scholar 

  • de Toma, G.: 2011, Evolution of coronal holes and implications for high-speed solar wind during the minimum between cycles 23 and 24. Solar Phys. 274(1), 195. DOI .

    Article  ADS  Google Scholar 

  • de Toma, G., Arge, C.N.: 2005, Multi-wavelength observations of coronal holes. ASP Conf. Ser. 346, 251.

    ADS  Google Scholar 

  • Delaboudinière, J.-P., Artzner, G.E., Brunaud, J., Gabriel, A.H., Hochedez, J.F., Millier, F., Song, X.Y., Au, B., Dere, K.P., Howard, R.A., Kreplin, R., Michels, D.J., Moses, J.D., Defise, J.M., Jamar, C., Rochus, P., Chauvineau, J.P., Marioge, J.P., Catura, R.C., Lemen, J.R., Shing, L., Stern, R.A., Gurman, J.B., Neupert, W.M., Maucherat, A., Clette, F., Cugnon, P., Van Dessel, E.L.: 1995, EIT: Extreme-ultraviolet imaging telescope for the SOHO mission. Solar Phys. 162, 291. DOI .

    Article  ADS  Google Scholar 

  • Floyd, L., Rottman, G., Deland, M., Pap, J.: 2003, 11 years of solar UV irradiance measurements from UARS. In: Wilson, A. (ed.) Solar Variability as an Input to the Earth’s Environment, ESA SP-535, 195.

    Google Scholar 

  • Floyd, L., Newmark, J., Cook, J., Herring, L., McMullin, D.: 2005, Solar EUV and UV spectral irradiances and solar indices. J. Atmos. Solar-Terr. Phys. 67(1), 3. DOI .

    Article  ADS  Google Scholar 

  • Gallagher, P.T., Phillips, K.J.H., Harra-Murnion, L.K., Keenan, F.P.: 1998, Properties of the quiet Sun EUV network. Astron. Astrophys. 335, 733.

    ADS  Google Scholar 

  • Gallagher, P.T., Mathioudakis, M., Keenan, F.P., Phillips, K.J.H., Tsinganos, K.: 1999, The radial and angular variation of the electron density in the solar corona. Astrophys. J. 524(2), L133. DOI .

    Article  ADS  Google Scholar 

  • Gonzalez, R., Woods, R.: 2002, Dig. Image Proc. 190, 0201180758. DOI .

    Google Scholar 

  • Gosling, J.T., Pizzo, V.J.: 1999, Formation and evolution of corotating interaction regions and their three dimensional structure. Space Sci. Rev. 89(1), 21. DOI .

    Article  ADS  Google Scholar 

  • Harvey, K.L., Recely, F.: 2002, Polar coronal holes during cycles 22 and 23. Solar Phys. 211, 31. DOI .

    Article  ADS  Google Scholar 

  • Harvey, J.W., Sheeley, N.R.: 1979, Coronal holes and solar magnetic fields. Space Sci. Rev. 23, 139. DOI .

    ADS  Google Scholar 

  • Hathaway, D.H., Upton, L.: 2014, The solar meridional circulation and sunspot cycle variability. J. Geophys. Res. 119(5), 3316. DOI .

    Article  Google Scholar 

  • Henney, C.J., Harvey, J.W.: 2007, Automated coronal hole detection using He I 1083 nm spectroheliograms and photospheric magnetograms. ASP Conf. Ser. 346, 261.

    ADS  Google Scholar 

  • Hess Webber, S.A., Karna, N., Pesnell, W.D., Kirk, M.S.: 2014, Areas of polar coronal holes from 1996 through 2010. Solar Phys. 289, 4047. DOI .

    Article  ADS  Google Scholar 

  • Holappa, L., Mursula, K., Asikainen, T., Richardson, I.G.: 2014, Annual fractions of high-speed streams from principal component analysis of local geomagnetic activity. J. Geophys. Res. 119(6), 4544. DOI .

    Article  Google Scholar 

  • Kahler, S.W., Davis, J.M., Harvey, J.W.: 1983, Comparison of coronal holes observed in soft X-ray and He 10830 Å spectroheliograms. Solar Phys. 87, 47. DOI .

    Article  ADS  Google Scholar 

  • Kahler, S.W., Hudson, H.S.: 2002, Boundary structures and changes in long-lived coronal holes. Astrophys. J. 574(1), 467. DOI .

    Article  ADS  Google Scholar 

  • Karna, N., Hess Webber, S.A., Pesnell, W.D.: 2014, Using polar coronal hole area measurements to determine the solar polar magnetic field reversal in solar cycle 24. Solar Phys. 289(9), 3381. DOI .

    Article  ADS  Google Scholar 

  • Kirk, M.S., Pesnell, W.D., Young, C.A., Hess Webber, S.A.: 2009, Automated detection of EUV polar coronal holes during solar cycle 23. Solar Phys. 257, 99. DOI .

    Article  ADS  Google Scholar 

  • Krieger, A.S., Timothy, A.F., Roelof, E.C.: 1973, A coronal hole and its identification as the source of a high velocity solar wind stream. Solar Phys. 29, 505. DOI .

    Article  ADS  Google Scholar 

  • Krista, L.D., Gallagher, P.T.: 2009, Automated coronal hole detection using local intensity thresholding techniques. Solar Phys. 256(1), 87. DOI .

    Article  ADS  Google Scholar 

  • Lowder, C., Jiong, Q., Leamon, R.: 2017, Coronal holes and open magnetic flux over cycles 23 and 24. Solar Phys. 292(1), 18. DOI .

    Article  ADS  Google Scholar 

  • Lukianova, R., Mursula, K.: 2011, Changed relation between sunspot numbers, solar UV/EUV radiation and TSI during the declining phase of solar cycle 23. J. Atmos. Solar-Terr. Phys. 73(2), 235. DOI .

    Article  ADS  Google Scholar 

  • McIntosh, S.W., Wang, X., Leamon, R.J., Howe, R., Krista, L.D., Malanushenko, A.V., Cirtain, J.W., Gurman, J.B., Thompson, M.J., Gurman, J.B., Pesnell, W.D., Thompson, M.J.: 2014, Deciphering solar magnetic activity I: On the relationship between the sunspot cycle and the evolution of small magnetic features. Astrophys. J. Lett. 792, L19. DOI .

    Article  Google Scholar 

  • McIntosh, S.W., Leamon, R.J., Krista, L.D., Title, A.M., Hudson, H.S., Riley, P., Harder, J.W., Kopp, G., Snow, M., Woods, T.N., Kasper, J.C., Stevens, M.L., Ulrich, R.K.: 2015, The solar magnetic activity band interaction and instabilities that shape quasi-periodic variability. Nat. Commun. 6, 6491. DOI .

    Article  ADS  Google Scholar 

  • Miralles, M.P., Cranmer, S.R., Panasyuk, A.V., Uzzo, M.: 2010, The tale of two minima and a solar cycle in between: An ongoing fast solar wind investigation. Astrophys. J. 428, 1.

    Google Scholar 

  • Moses, D., Clette, F., Delaboudinière, J.-P., Artzner, G.E., Bougnet, M., Brunaud, J., Carabetian, C., Gabriel, A.H., Hochedez, J.-F., Millier, F., Song, X.Y., Au, B., Dere, K.P., Howard, R.A., Kreplin, R., Michels, D.J., Defise, J.-M., Jamar, C., Rochus, P., Chauvineau, J.P., Marioge, J.P., Catura, R.C., Lemen, J.R., Shing, L., Stern, R.A., Gurman, J.B., Neupert, W.M., Newmark, J.S., Thompson, B., Maucherat, A., Portier-Fozzani, F., Berghmans, D., Cugnon, P., Van Dessel, E.L., Gabryl, J.R.: 1997, EIT observations of the extreme ultraviolet Sun. Solar Phys. 175, 571. DOI .

    Article  ADS  Google Scholar 

  • Mursula, K., Holappa, L., Lukianova, R.: 2017, Seasonal solar wind speeds for the last 100 years: Unique coronal hole structures during the peak and demise of the grand modern maximum. Geophys. Res. Lett. 44(1), 30. DOI .

    Article  ADS  Google Scholar 

  • Mursula, K., Lukianova, R., Holappa, L.: 2015, Occurrence of high-speed solar wind streams over the grand modern maximum. Astrophys. J. 801(1), 30. DOI .

    Article  ADS  Google Scholar 

  • Neupert, W.M., Pizzo, V.: 1974, Solar coronal holes as sources of recurrent geomagnetic disturbances. J. Geophys. Res. 79, 3701. DOI .

    Article  ADS  Google Scholar 

  • Petkaki, P., Del Zanna, G., Mason, H.E., Bradshaw, S.J.: 2012, SDO AIA and EVE observations and modelling of solar flare loops. Astron. Astrophys. 547, A25. DOI .

    Article  Google Scholar 

  • Scholl, I.F., Habbal, S.R.: 2008, Automatic detection and classification of coronal holes and filaments based on EUV and magnetogram observations of the solar disk. Solar Phys. 248(2), 425. DOI .

    Article  ADS  Google Scholar 

  • Sheeley, N.R., Wang, Y.-M., Harvey, J.W.: 1989, The effect of newly erupting flux on the polar coronal holes. Solar Phys. 119, 323. DOI .

    Article  ADS  Google Scholar 

  • Sun, X., Todd Hoeksema, J., Liu, Y., Zhao, J.: 2015, On polar magnetic field reversal and surface flux transport during solar cycle 24. Astrophys. J. 798(2), 114. DOI .

    Article  ADS  Google Scholar 

  • Tousey, R., Sandlin, G.D., Purcell, J.D.: 1968, On some aspects of XUV spectroheliograms. In: Kiepenheuer, K.O. (ed.) Structure and Development of Solar Active Regions, IAU Symp. 35, 411. DOI .

    Chapter  Google Scholar 

  • Tsurutani, B.T., Gonzalez, W.D., Gonzalez, A.L.C., Tang, F., Arballo, J.K., Okada, M.: 1995, Interplanetary origin of geomagnetic activity in the declining phase of the solar cycle. J. Geophys. Res. 100, 21717. DOI .

    Article  ADS  Google Scholar 

  • Vernova, E.S., Mursula, K., Tyasto, M.I., Baranov, D.G.: 2002, A new pattern for the North–South asymmetry of sunspots. Solar Phys. 205(2), 371. DOI .

    Article  ADS  Google Scholar 

  • Virtanen, I., Mursula, K.: 2016, Photospheric and coronal magnetic fields in six magnetographs I. Consistent evolution of the bashful ballerina. Astron. Astrophys. 16(28096), 1. DOI .

    Google Scholar 

  • Waldmeier, M.: 1957, Die sonnenkorona II, Birkhäuser, Basel. DOI .

    Book  MATH  Google Scholar 

  • Wang, Y.-M.: 2004, The Sun’s large-scale magnetic field and its long-term evolution. Solar Phys. 224(1), 21. DOI .

    Article  ADS  Google Scholar 

  • Wang, Y.-M., Sheeley, N.R.: 2002, Sunspot activity and the long-term variation of the Sun’s open magnetic flux. J. Geophys. Res. 107(A10), 1302. DOI .

    Article  Google Scholar 

  • Zirker, J.B. (ed.): 1977, Coronal Holes and High Speed Wind Streams, Colorado Assoc. Univ. Press, Boulder. DOI .

    Google Scholar 

Download references

Acknowledgements

We acknowledge the financial support by the Academy of Finland to the ReSoLVE Centre of Excellence (projects 272157, 307411) as well as to project 257403. The EUV/magnetogram synoptic map data were obtained from the Stanford Solar Observatories Group ( http://sun.stanford.edu/synop/EIT/index.html ) and the Space Weather Lab at George Mason University (http://space_weather.gmu.edu/projects/ synop). The monthly sunspot areas were obtained from the Royal Observatory of Greenwich – USAF/NOAA Sunspot Data center ( https://solarscience.msfc.nasa.gov/greenwch.shtml ).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Amr Hamada, Timo Asikainen, Ilpo Virtanen or Kalevi Mursula.

Ethics declarations

Disclosure of Potential Conflicts of Interest

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hamada, A., Asikainen, T., Virtanen, I. et al. Automated Identification of Coronal Holes from Synoptic EUV Maps. Sol Phys 293, 71 (2018). https://doi.org/10.1007/s11207-018-1289-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11207-018-1289-2

Keywords

Navigation