Advertisement

Solar Physics

, 293:71 | Cite as

Automated Identification of Coronal Holes from Synoptic EUV Maps

  • Amr Hamada
  • Timo Asikainen
  • Ilpo Virtanen
  • Kalevi Mursula
Article

Abstract

Coronal holes (CHs) are regions of open magnetic field lines in the solar corona and the source of the fast solar wind. Understanding the evolution of coronal holes is critical for solar magnetism as well as for accurate space weather forecasts. We study the extreme ultraviolet (EUV) synoptic maps at three wavelengths (195 Å/193 Å, 171 Å and 304 Å) measured by the Solar and Heliospheric Observatory/Extreme Ultraviolet Imaging Telescope (SOHO/EIT) and the Solar Dynamics Observatory/Atmospheric Imaging Assembly (SDO/AIA) instruments. The two datasets are first homogenized by scaling the SDO/AIA data to the SOHO/EIT level by means of histogram equalization. We then develop a novel automated method to identify CHs from these homogenized maps by determining the intensity threshold of CH regions separately for each synoptic map. This is done by identifying the best location and size of an image segment, which optimally contains portions of coronal holes and the surrounding quiet Sun allowing us to detect the momentary intensity threshold. Our method is thus able to adjust itself to the changing scale size of coronal holes and to temporally varying intensities. To make full use of the information in the three wavelengths we construct a composite CH distribution, which is more robust than distributions based on one wavelength. Using the composite CH dataset we discuss the temporal evolution of CHs during the Solar Cycles 23 and 24.

Keywords

Coronal holes: automatic detection Solar cycle EUV synoptic maps 

Notes

Acknowledgements

We acknowledge the financial support by the Academy of Finland to the ReSoLVE Centre of Excellence (projects 272157, 307411) as well as to project 257403. The EUV/magnetogram synoptic map data were obtained from the Stanford Solar Observatories Group ( http://sun.stanford.edu/synop/EIT/index.html ) and the Space Weather Lab at George Mason University (http://space_weather.gmu.edu/projects/ synop). The monthly sunspot areas were obtained from the Royal Observatory of Greenwich – USAF/NOAA Sunspot Data center ( https://solarscience.msfc.nasa.gov/greenwch.shtml ).

Disclosure of Potential Conflicts of Interest

The authors declare that they have no conflicts of interest.

References

  1. Abramenko, V., Yurchyshyn, V., Watanabe, H.: 2009, Parameters of the magnetic flux inside coronal holes. Solar Phys. 260(1), 43. DOI. ADSCrossRefGoogle Scholar
  2. Asikainen, T., Ruopsa, M.: 2016, Solar wind drivers of energetic electron precipitation. J. Geophys. Res. 121(3), 2209. DOI. CrossRefGoogle Scholar
  3. Barra, V., Delouille, V., Kretzschmar, M., Hochedez, J.-F.: 2009, Fast and robust segmentation of solar EUV images: Algorithm and results for solar cycle 23. Astron. Astrophys. 505(1), 361. DOI. ADSCrossRefGoogle Scholar
  4. Belkasim, S., Ghazal, A., Basir, O.A.: 2003, Phase-based optimal image thresholding. Digit. Signal Process. 13(4), 636. DOI. CrossRefGoogle Scholar
  5. Benevolenskaya, E.E., Kosovichev, A.G., Scherrer, P.H.: 2001, Detection of high-latitude waves of solar coronal activity in extreme-ultraviolet data from the solar and heliospheric observatory EUV imaging telescope. Astrophys. J. 554, L107. DOI. ADSCrossRefGoogle Scholar
  6. Boerner, P.F., Testa, P., Warren, H., Weber, M.A., Schrijver, C.J.: 2014, Photometric and thermal cross-calibration of solar EUV instruments. Solar Phys. 289(6), 2377. DOI. ADSCrossRefGoogle Scholar
  7. Caplan, R.M., Downs, C., Linker, J.A.: 2016, Synchronic coronal hole mapping using multi-instrument EUV images: Data preparation and detection method. Astrophys. J. 823(1), 53. DOI. ADSCrossRefGoogle Scholar
  8. Cranmer, S.R.: 2009, Coronal holes. Living Rev. Solar Phys. 6(3), 14. DOI. Google Scholar
  9. de Toma, G.: 2011, Evolution of coronal holes and implications for high-speed solar wind during the minimum between cycles 23 and 24. Solar Phys. 274(1), 195. DOI. ADSCrossRefGoogle Scholar
  10. de Toma, G., Arge, C.N.: 2005, Multi-wavelength observations of coronal holes. ASP Conf. Ser. 346, 251. ADSGoogle Scholar
  11. Delaboudinière, J.-P., Artzner, G.E., Brunaud, J., Gabriel, A.H., Hochedez, J.F., Millier, F., Song, X.Y., Au, B., Dere, K.P., Howard, R.A., Kreplin, R., Michels, D.J., Moses, J.D., Defise, J.M., Jamar, C., Rochus, P., Chauvineau, J.P., Marioge, J.P., Catura, R.C., Lemen, J.R., Shing, L., Stern, R.A., Gurman, J.B., Neupert, W.M., Maucherat, A., Clette, F., Cugnon, P., Van Dessel, E.L.: 1995, EIT: Extreme-ultraviolet imaging telescope for the SOHO mission. Solar Phys. 162, 291. DOI. ADSCrossRefGoogle Scholar
  12. Floyd, L., Rottman, G., Deland, M., Pap, J.: 2003, 11 years of solar UV irradiance measurements from UARS. In: Wilson, A. (ed.) Solar Variability as an Input to the Earth’s Environment, ESA SP-535, 195. Google Scholar
  13. Floyd, L., Newmark, J., Cook, J., Herring, L., McMullin, D.: 2005, Solar EUV and UV spectral irradiances and solar indices. J. Atmos. Solar-Terr. Phys. 67(1), 3. DOI. ADSCrossRefGoogle Scholar
  14. Gallagher, P.T., Phillips, K.J.H., Harra-Murnion, L.K., Keenan, F.P.: 1998, Properties of the quiet Sun EUV network. Astron. Astrophys. 335, 733. ADSGoogle Scholar
  15. Gallagher, P.T., Mathioudakis, M., Keenan, F.P., Phillips, K.J.H., Tsinganos, K.: 1999, The radial and angular variation of the electron density in the solar corona. Astrophys. J. 524(2), L133. DOI. ADSCrossRefGoogle Scholar
  16. Gonzalez, R., Woods, R.: 2002, Dig. Image Proc. 190, 0201180758. DOI. Google Scholar
  17. Gosling, J.T., Pizzo, V.J.: 1999, Formation and evolution of corotating interaction regions and their three dimensional structure. Space Sci. Rev. 89(1), 21. DOI. ADSCrossRefGoogle Scholar
  18. Harvey, K.L., Recely, F.: 2002, Polar coronal holes during cycles 22 and 23. Solar Phys. 211, 31. DOI. ADSCrossRefGoogle Scholar
  19. Harvey, J.W., Sheeley, N.R.: 1979, Coronal holes and solar magnetic fields. Space Sci. Rev. 23, 139. DOI. ADSGoogle Scholar
  20. Hathaway, D.H., Upton, L.: 2014, The solar meridional circulation and sunspot cycle variability. J. Geophys. Res. 119(5), 3316. DOI. CrossRefGoogle Scholar
  21. Henney, C.J., Harvey, J.W.: 2007, Automated coronal hole detection using He I 1083 nm spectroheliograms and photospheric magnetograms. ASP Conf. Ser. 346, 261. ADSGoogle Scholar
  22. Hess Webber, S.A., Karna, N., Pesnell, W.D., Kirk, M.S.: 2014, Areas of polar coronal holes from 1996 through 2010. Solar Phys. 289, 4047. DOI. ADSCrossRefGoogle Scholar
  23. Holappa, L., Mursula, K., Asikainen, T., Richardson, I.G.: 2014, Annual fractions of high-speed streams from principal component analysis of local geomagnetic activity. J. Geophys. Res. 119(6), 4544. DOI. CrossRefGoogle Scholar
  24. Kahler, S.W., Davis, J.M., Harvey, J.W.: 1983, Comparison of coronal holes observed in soft X-ray and He 10830 Å spectroheliograms. Solar Phys. 87, 47. DOI. ADSCrossRefGoogle Scholar
  25. Kahler, S.W., Hudson, H.S.: 2002, Boundary structures and changes in long-lived coronal holes. Astrophys. J. 574(1), 467. DOI. ADSCrossRefGoogle Scholar
  26. Karna, N., Hess Webber, S.A., Pesnell, W.D.: 2014, Using polar coronal hole area measurements to determine the solar polar magnetic field reversal in solar cycle 24. Solar Phys. 289(9), 3381. DOI. ADSCrossRefGoogle Scholar
  27. Kirk, M.S., Pesnell, W.D., Young, C.A., Hess Webber, S.A.: 2009, Automated detection of EUV polar coronal holes during solar cycle 23. Solar Phys. 257, 99. DOI. ADSCrossRefGoogle Scholar
  28. Krieger, A.S., Timothy, A.F., Roelof, E.C.: 1973, A coronal hole and its identification as the source of a high velocity solar wind stream. Solar Phys. 29, 505. DOI. ADSCrossRefGoogle Scholar
  29. Krista, L.D., Gallagher, P.T.: 2009, Automated coronal hole detection using local intensity thresholding techniques. Solar Phys. 256(1), 87. DOI. ADSCrossRefGoogle Scholar
  30. Lowder, C., Jiong, Q., Leamon, R.: 2017, Coronal holes and open magnetic flux over cycles 23 and 24. Solar Phys. 292(1), 18. DOI. ADSCrossRefGoogle Scholar
  31. Lukianova, R., Mursula, K.: 2011, Changed relation between sunspot numbers, solar UV/EUV radiation and TSI during the declining phase of solar cycle 23. J. Atmos. Solar-Terr. Phys. 73(2), 235. DOI. ADSCrossRefGoogle Scholar
  32. McIntosh, S.W., Wang, X., Leamon, R.J., Howe, R., Krista, L.D., Malanushenko, A.V., Cirtain, J.W., Gurman, J.B., Thompson, M.J., Gurman, J.B., Pesnell, W.D., Thompson, M.J.: 2014, Deciphering solar magnetic activity I: On the relationship between the sunspot cycle and the evolution of small magnetic features. Astrophys. J. Lett. 792, L19. DOI. CrossRefGoogle Scholar
  33. McIntosh, S.W., Leamon, R.J., Krista, L.D., Title, A.M., Hudson, H.S., Riley, P., Harder, J.W., Kopp, G., Snow, M., Woods, T.N., Kasper, J.C., Stevens, M.L., Ulrich, R.K.: 2015, The solar magnetic activity band interaction and instabilities that shape quasi-periodic variability. Nat. Commun. 6, 6491. DOI. ADSCrossRefGoogle Scholar
  34. Miralles, M.P., Cranmer, S.R., Panasyuk, A.V., Uzzo, M.: 2010, The tale of two minima and a solar cycle in between: An ongoing fast solar wind investigation. Astrophys. J. 428, 1. Google Scholar
  35. Moses, D., Clette, F., Delaboudinière, J.-P., Artzner, G.E., Bougnet, M., Brunaud, J., Carabetian, C., Gabriel, A.H., Hochedez, J.-F., Millier, F., Song, X.Y., Au, B., Dere, K.P., Howard, R.A., Kreplin, R., Michels, D.J., Defise, J.-M., Jamar, C., Rochus, P., Chauvineau, J.P., Marioge, J.P., Catura, R.C., Lemen, J.R., Shing, L., Stern, R.A., Gurman, J.B., Neupert, W.M., Newmark, J.S., Thompson, B., Maucherat, A., Portier-Fozzani, F., Berghmans, D., Cugnon, P., Van Dessel, E.L., Gabryl, J.R.: 1997, EIT observations of the extreme ultraviolet Sun. Solar Phys. 175, 571. DOI. ADSCrossRefGoogle Scholar
  36. Mursula, K., Holappa, L., Lukianova, R.: 2017, Seasonal solar wind speeds for the last 100 years: Unique coronal hole structures during the peak and demise of the grand modern maximum. Geophys. Res. Lett. 44(1), 30. DOI. ADSCrossRefGoogle Scholar
  37. Mursula, K., Lukianova, R., Holappa, L.: 2015, Occurrence of high-speed solar wind streams over the grand modern maximum. Astrophys. J. 801(1), 30. DOI. ADSCrossRefGoogle Scholar
  38. Neupert, W.M., Pizzo, V.: 1974, Solar coronal holes as sources of recurrent geomagnetic disturbances. J. Geophys. Res. 79, 3701. DOI. ADSCrossRefGoogle Scholar
  39. Petkaki, P., Del Zanna, G., Mason, H.E., Bradshaw, S.J.: 2012, SDO AIA and EVE observations and modelling of solar flare loops. Astron. Astrophys. 547, A25. DOI. CrossRefGoogle Scholar
  40. Scholl, I.F., Habbal, S.R.: 2008, Automatic detection and classification of coronal holes and filaments based on EUV and magnetogram observations of the solar disk. Solar Phys. 248(2), 425. DOI. ADSCrossRefGoogle Scholar
  41. Sheeley, N.R., Wang, Y.-M., Harvey, J.W.: 1989, The effect of newly erupting flux on the polar coronal holes. Solar Phys. 119, 323. DOI. ADSCrossRefGoogle Scholar
  42. Sun, X., Todd Hoeksema, J., Liu, Y., Zhao, J.: 2015, On polar magnetic field reversal and surface flux transport during solar cycle 24. Astrophys. J. 798(2), 114. DOI. ADSCrossRefGoogle Scholar
  43. Tousey, R., Sandlin, G.D., Purcell, J.D.: 1968, On some aspects of XUV spectroheliograms. In: Kiepenheuer, K.O. (ed.) Structure and Development of Solar Active Regions, IAU Symp. 35, 411. DOI. CrossRefGoogle Scholar
  44. Tsurutani, B.T., Gonzalez, W.D., Gonzalez, A.L.C., Tang, F., Arballo, J.K., Okada, M.: 1995, Interplanetary origin of geomagnetic activity in the declining phase of the solar cycle. J. Geophys. Res. 100, 21717. DOI. ADSCrossRefGoogle Scholar
  45. Vernova, E.S., Mursula, K., Tyasto, M.I., Baranov, D.G.: 2002, A new pattern for the North–South asymmetry of sunspots. Solar Phys. 205(2), 371. DOI. ADSCrossRefGoogle Scholar
  46. Virtanen, I., Mursula, K.: 2016, Photospheric and coronal magnetic fields in six magnetographs I. Consistent evolution of the bashful ballerina. Astron. Astrophys. 16(28096), 1. DOI. Google Scholar
  47. Waldmeier, M.: 1957, Die sonnenkorona II, Birkhäuser, Basel. DOI. CrossRefzbMATHGoogle Scholar
  48. Wang, Y.-M.: 2004, The Sun’s large-scale magnetic field and its long-term evolution. Solar Phys. 224(1), 21. DOI. ADSCrossRefGoogle Scholar
  49. Wang, Y.-M., Sheeley, N.R.: 2002, Sunspot activity and the long-term variation of the Sun’s open magnetic flux. J. Geophys. Res. 107(A10), 1302. DOI. CrossRefGoogle Scholar
  50. Zirker, J.B. (ed.): 1977, Coronal Holes and High Speed Wind Streams, Colorado Assoc. Univ. Press, Boulder. DOI. Google Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.ReSoLVE Centre of Excellence, Space Climate Research UnitUniversity of OuluOuluFinland

Personalised recommendations