Advertisement

Science & Education

, Volume 23, Issue 2, pp 465–484 | Cite as

Determinism and Underdetermination in Genetics: Implications for Students’ Engagement in Argumentation and Epistemic Practices

  • María Pilar Jiménez-Aleixandre
Article

Abstract

In the last two decades science studies and science education research have shifted from an interest in products (of science or of learning), to an interest in processes and practices. The focus of this paper is on students’ engagement in epistemic practices (Kelly in Teaching scientific inquiry: Recommendations for research and implementation. Sense Publishers, Rotterdam, pp 99–117, 2008), or on their practical epistemologies (Wickman in Sci Educ 88(3):325–344, 2004). In order to support these practices in genetics classrooms we need to take into account domain-specific features of the epistemology of genetics, in particular issues about determinism and underdetermination. I suggest that certain difficulties may be related to the specific nature of causality in genetics, and in particular to the correspondence between a given set of factors and a range of potential effects, rather than a single one. The paper seeks to bring together recent developments in the epistemology of biology and of genetics, on the one hand, with science education approaches about epistemic practices, on the other. The implications of these perspectives for current challenges in learning genetics are examined, focusing on students’ engagement in epistemic practices, as argumentation, understood as using evidence to evaluate knowledge claims. Engaging in argumentation in genetics classrooms is intertwined with practices such as using genetics models to build explanations, or framing genetics issues in their social context. These challenges are illustrated with studies making part of our research program in the USC.

Keywords

Science Learning Bovine Spongiform Encephalopathy Scrapie Genetic Knowledge Genetic Determinism 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

Work supported by the Spanish Ministry of Science and Innovation (Ministerio de Ciencia e Innovación), code EDU2009-13890-C02-01. The author gratefully acknowledges the work from the doctoral dissertations of Ánxela Bugallo-Rodríguez, Marta Federico-Agraso and Blanca Puig, discussed in the paper. Thanks also for the helpful suggestions of Kostas Kampourakis, Thomas Reydon and Science & Education’s anonymous reviewers to the first draft.

References

  1. Banet, E., & Ayuso, G. E. (2003). Teaching of biological inheritance and evolution of living beings in secondary schoo. International Journal of Science Education, 25(3), 373–407.CrossRefGoogle Scholar
  2. Bechtel, W. (1984). The evolution of our understanding of the cell: A study in the dynamics of scientific progress. Studies in History and Philosophy of Science, 15(4), 309–356.CrossRefGoogle Scholar
  3. Bechtel, W. P., & Hamilton, A. (2007). Reduction, integration, and the unity of science: Natural, behavioral, and social sciences and the humanities. In T. Kuipers (Ed.), Handbook of the philosophy of science: General philosophy of science—focal issues (pp. 377–430). New York: Elsevier.CrossRefGoogle Scholar
  4. Bechtel, W., & Richardson, R. C. (1993). Discovering complexity. Decomposition and localization as strategies in scientific research. Princeton: Princeton University Press.Google Scholar
  5. Brannigan, A. (1979). The reification of mendel. Social Studies of Science, 9, 423–454.CrossRefGoogle Scholar
  6. Brigandt, I. (2011). Explanation in biology: Reduction, pluralism, and explanatory aims. Science & Education. doi: 10.1007/s11191-011-9350-7.
  7. Brown, A. L. (1992). Design experiments: Theoretical and methodological challenges in creating complex interventions in classroom settings. The Journal of the Learning Sciences, 2(2), 141–178.CrossRefGoogle Scholar
  8. Campbell, M. (1980). Did de Vries discover the law of segregation independently? Annals of Science, 37, 639–655.CrossRefGoogle Scholar
  9. Cole, M., & Engeström, Y. (1993). A cultural-historical approach to distributed cognition. In G. Salomon (Ed.) Distributed cognitions. Psychological and educational considerations (pp. 1–46). Cambridge, MA: Cambridge University Press.Google Scholar
  10. Comfort, N. C. (1999). “The real point is control”: The reception of Barbara McClintock’s controlling elements. Journal of the History of Biology, 32(1), 133–162.CrossRefGoogle Scholar
  11. Creath, R., & Maienschein, J. (Eds.). (2000). Biology and epistemology. Cambridge: Cambridge University Press.Google Scholar
  12. Darden, L. (1985). Hugo de Vries’s lecture plates and the discovery of segregation. Annals of Science, 42, 233–242.CrossRefGoogle Scholar
  13. Duschl, R. A., & Grandy, R. E. (2008). Reconsidering the character and role of inquiry in school science: Framing the debates. In R. A. Duschl & R. E. Grandy (Eds.), Teaching scientific inquiry: Recommendations for research and implementation (pp. 1–37). Rotterdam: Sense Publishers.Google Scholar
  14. Duschl, R. A., & Grandy, R. (2012). Two views about explicitly teaching nature of science. Science & Education. doi: 10.1007/s11191-012-9539-4.
  15. Duschl, R. A., & Hamilton, R. (1998). Conceptual change in science and in the learning of science. In B. Fraser & K. Tobin (Eds.), International handbook of science education (pp. 1047–1065). Dordrecht: Kluwer.CrossRefGoogle Scholar
  16. Duschl, R. A., & Jiménez-Aleixandre, M. P. (2012). Epistemic foundations for conceptual change. In S. M. Carver & J. Shrager (Eds.), The journey from child to scientist: Integrating cognitive development and the education sciences (pp. 245–262). Washington, DC: American Psychological Association.CrossRefGoogle Scholar
  17. Elby, A., & Hammer, D. (2001). On the substance of a sophisticated epistemology. Science Education, 85, 554–567.CrossRefGoogle Scholar
  18. Erduran, S. (2007). Breaking the law: Promoting domain-specificity in chemical education in the context of arguing about the periodic law. Foundations of Chemistry, 9(3), 247–263. doi: 10.1007/s10698-007-9036-z.CrossRefGoogle Scholar
  19. Fairbanks, D., & Rytting, B. (2001). Mendelian controversies: A botanical and historical review. American Journal of Botany, 88, 737–752.CrossRefGoogle Scholar
  20. Federico-Agraso, M., & Jiménez-Aleixandre, M. P. (2008). Therapeutic cloning? Discourse genres, ethical issues and students’ perceptions. In M. Hammann, M. Reiss, C. Boulter, & S. D. Tunnicliffe (Eds.), Biology in context. Learning and teaching for the twenty-first century (pp. 315–326). London: University of London.Google Scholar
  21. Fisher, R. A. (1936). Has Mendel’s work been rediscovered? Annals of Science, 1, 115–137.CrossRefGoogle Scholar
  22. Franklin, A., Edwards, A. W. F., Fairbanks, D. J., Hart, D. L., & Seidenfield, T. (2008). Ending the mendel-fisher controversy. Pittsburgh: University of Pittsburgh Press.Google Scholar
  23. Giere, R. N. (1988). Explaining science: A cognitive approach. Chicago: University of Chicago Press.CrossRefGoogle Scholar
  24. Giere, R. N. (1992). Cognitive models of science. Minneapolis, MN: University of Minnesota Press.Google Scholar
  25. Habermas, J. (1981–1984). The theory of communicative action. Boston: Beacon Press.Google Scholar
  26. Hamza, K. M., & Wickman, P.-O. (2008). Describing and analyzing learning in action: An empirical study of the importance of misconceptions in learning science. Science Education, 92, 141–164.CrossRefGoogle Scholar
  27. Hofer, B. K., & Pintrich, P. R. (1997). The development of epistemological theories: Beliefs about knowledge and knowing and their relation to learning. Review of Educational Research, 67(1), 88–140.CrossRefGoogle Scholar
  28. Hwang, W. S., Ryu, Y. J., Park, J. H., Park, E. S., Lee, E. G., Koo, J. M., et al. (2004). Evidence of a pluripotent human embryonic stem cell line derived from a cloned blastocyst. Science, 303, 1669–1674.CrossRefGoogle Scholar
  29. Jiménez-Aleixandre, M. P. (1994). Teaching evolution and natural selection: A look at textbooks and teachers. Journal of Research in Science Teaching, 31, 519–535.CrossRefGoogle Scholar
  30. Jiménez-Aleixandre, M. P., Bugallo, Rodríguez. A., & Duschl, R. A. (2000). ‘Doing the lesson’ or ‘Doing science’: Argument in high school genetics. Science Education, 84, 757–792.CrossRefGoogle Scholar
  31. Jiménez-Aleixandre, M. P., & Erduran, S. (2008). Argumentation in science education: An overview. In S. Erduran & M. P. Jiménez-Aleixandre (Eds.), Argumentation in science education: Perspectives from classroom-based research (pp. 3–27). Dordrecht: Springer.Google Scholar
  32. Jiménez-Aleixandre, M. P., & Federico-Agraso, M. (2009). Justification and persuasion about cloning: Arguments in Hwang’s paper and journalistic reported versions. Research in Science Education, 39, 331–347.CrossRefGoogle Scholar
  33. Jiménez-Aleixandre, M. P., & Puig, B. (2012). Argumentation, evidence evaluation and critical thinking. In B. Fraser, K. Tobin, & C. McRobbie (Eds.), Second international handbook of science education (pp. 1001–1015). Dordrecht: Springer.CrossRefGoogle Scholar
  34. Jiménez-Aleixandre, M. P., & Reigosa, C. (2006). Contextualizing practices across epistemic levels in the chemistry laboratory. Science Education, 90, 707–733.Google Scholar
  35. Kampourakis, K. (2010). Mendel and the path to genetics: Portraying science as a social process. Science & Education. doi: 10.1007/s11191-010-9323-2.
  36. Kampourakis, K., & Zogza, V. (2008). Students’ intuitive explanations of the causes of homologies and adaptations. Science & Education, 17, 27–47.CrossRefGoogle Scholar
  37. Keller, E. F. (1983). A feeling for the organism. The life and work of Barbara McClintock. New York: W. H. Freeman.Google Scholar
  38. Keller, E. F. (2000). Making sense of life: Explanation in developmental biology. In R. Creath & J. Maienschein (Eds.), Biology and epistemology (pp. 244–260). Cambridge: Cambridge University Press.Google Scholar
  39. Keller, E. F. (2010). The mirage of a space between nature and nurture. London: Duke University Press.CrossRefGoogle Scholar
  40. Kelly, G. J. (2008). Inquiry, activity and epistemic practice. In R. A. Duschl & R. E. Grandy (Eds.), Teaching scientific inquiry: Recommendations for research and implementation (pp. 99–117). Rotterdam: Sense Publishers.Google Scholar
  41. Kelly, G. J., Carlsen, W. S., & Cunningham, C. M. (1993). Science education in sociocultural context: Perspectives from the sociology of science. Science Education., 77, 207–220.CrossRefGoogle Scholar
  42. Kelly, G. J., Chen, C., & Crawford, T. (1998). Methodological considerations for studying science-in-the-making in educational settings. Research in Science Education, 28(1), 23–49.CrossRefGoogle Scholar
  43. Kelly, G., McDonald, S., & Wickman, P. (2012). Science learning and epistemology. In B. Fraser & K. Tobin (Eds.), Second international handbook of science education (pp. 281–291). Dordrecht: Springer.CrossRefGoogle Scholar
  44. Kelly, G. J., & Takao, A. (2002). Epistemic levels in argument: An analysis of university oceanography students’ use of evidence in writing. Science Education, 86, 314–342.CrossRefGoogle Scholar
  45. Lewontin, R. C. (1991). Biology as ideology. The doctrine of DNA. New York: Harper Collins.Google Scholar
  46. Lewontin, R. C. (2000). What do population geneticists know and how do they know it? In R. Creath & J. Maienschein (Eds.), Biology and epistemology (pp. 191–214). Cambridge: Cambridge University Press.Google Scholar
  47. Lewontin, R. C., Rose, S., & Kamin, J. (1984). Not in our genes. Biology, ideology and human nature. New York: Pantheon books.Google Scholar
  48. Longino, H. E. (1990). Science as social knowledge: Values and objectivity in scientific inquiry. Princeton: Princeton University Press.Google Scholar
  49. Longino, H. E. (2000). Toward an epistemology for biological pluralism. In R. Creath & J. Maienschein (Eds.), Biology and epistemology (pp. 261–286). Cambridge: Cambridge University Press.Google Scholar
  50. Longino, H. E. (2002). The fate of knowledge. Princeton: Princeton University Press.Google Scholar
  51. Longino, H. E. (2008). Philosophical issues and next steps for research. In R. A. Duschl & R. E. Grandy (Eds.), Teaching scientific inquiry: Recommendations for research and implementation (pp. 134–137). Rotterdam: Sense Publishers.Google Scholar
  52. Looijen, R. C. (2000). Holism and reductionism in biology and ecology. Dordrecht: Kluwer.CrossRefGoogle Scholar
  53. MacRoberts, M. (1985). Was Mendel’s paper on Pisum neglected or unknown? Annals of Science, 42, 339–345.CrossRefGoogle Scholar
  54. Magnus, D. (2000). Down the primrose path: Competing epistemologies in early twentieth-century biology. In R. Creath & J. Maienschein (Eds.), Biology and epistemology (pp. 91–121). Cambridge: Cambridge University Press.Google Scholar
  55. Magnus, D., & Cho, M. K. (2005). Issues in oocyte donation for stem cell research. Science, 308, 1747–1748.CrossRefGoogle Scholar
  56. Manuelidis, L. (2007). A 25 nm virion is the likely cause of transmissible spongiform encephalopathies. Journal of Cellular Biochemistry, 100(4), 897–915.CrossRefGoogle Scholar
  57. Mayr, E. (1997). This is biology. The science of the living world. Cambridge (MA): Harvard University Press.Google Scholar
  58. McClintock, B. (1950). The origin and behavior of mutable loci in maize. Proceedings of the National Academy of Sciences of the United States of America, 36(6), 344–355. doi: 10.1073/pnas.36.6.344.CrossRefGoogle Scholar
  59. McClintock, B. (1953). Induction of instability at selected loci in maize. Genetics, 38(6), 579–599.Google Scholar
  60. Mendel, G. (1866). Versuche über pflanzen-hybriden. Verhandlungen des Naturforschenden Vereines in Brunn. 4, 3–47. (Reproduced in E. von Tschermak, Ed., Leipzig: Engelmann, 1913, pp. 3–46).Google Scholar
  61. Mitchell, S. (2003). Biological complexity and integrative pluralism. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  62. Olby, R. C. (1979). Mendel no Mendelian? History of Science, 17, 53–72.Google Scholar
  63. Piaget, J., & Inhelder, B. (1951). La genèse de l’idée de hasard chez l’enfant, 2nd edn, 1974. Paris: Presses Universitaires de France.Google Scholar
  64. Piquemal, J. (1965). Aspects de la pensée de Mendel (Aspects of Mendel’s thinking). Paris: Palais de la Découverte (Impr. Alençonnaise).Google Scholar
  65. Prusiner, S. B. (1982). Novel proteinaceous infectious particles cause scrapie. Science, 216(4542), 136–144. doi: 10.1126/science.6801762.CrossRefGoogle Scholar
  66. Puig, B., & Jiménez-Aleixandre, M. P. (2011). Different music to the same score: Teaching about genes, environment and human performances. In T. D. Sadler (Ed.), Socio-scientific issues in the classroom: Teaching, learning and research (pp. 201–238). Dordrecht: Springer.CrossRefGoogle Scholar
  67. Rigotti, E., & Greco-Morasso, S. (2009). Argumentation as an object of interest and as a social and cultural resource. In N. Muller-Mirza & A.-N. Perret-Clermont (Eds.), Argumentation and education: Theoretical foundations and practices (pp. 9–66). Dordrecht: Springer.CrossRefGoogle Scholar
  68. Rudolph, J. L., & Stewart, J. (1998). Evolution and the nature of science: On the historical discord and its implications for education. Journal of Research in Science Teaching, 35(10), 1069–1089.CrossRefGoogle Scholar
  69. Schaffner, K. (1993). Discovery and explanation in biology and medicine. Chicago: University of Chicago Press.Google Scholar
  70. Svoboda, J., & Passmore, C. (2011). The strategies of modeling in biology education. Science & Education. doi: 10.1007/s11191-011-9425-5.
  71. Venter, J. C., et al. (2001). The sequence of the human genome. Science, 292(5507), 1304–1351.CrossRefGoogle Scholar
  72. Vicedo, M. (2000). Experimentation in early genetics: The implications of the historical character of science for scientific realism. In R. Creath & J. Maienschein (Eds.), Biology and epistemology (pp. 215–243). Cambridge: Cambridge University Press.Google Scholar
  73. Vygotsky, L. S. (1978). Mind in society: The development of higher psychological processes. Cambridge, MA: Harvard University Press.Google Scholar
  74. Weiss, K. M. (2009). Pieces of eight! Evolutionary Anthropology, 18, 125–130.CrossRefGoogle Scholar
  75. Wickman, P.-O. (2004). The practical epistemologies of the classroom: A study of laboratory work. Science Education, 88(3), 325–344.CrossRefGoogle Scholar
  76. Wickman, P. -O. (2011). Practical epistemologies as beliefs or as actions. Paper presented at the European Science Education Research Association (ESERA) conference. Lyon, September.Google Scholar
  77. Wickman, P.-O., & Östman, L. (2002). Learning as discourse change: A sociocultural mechanism. Science Education, 86(5), 601–623.CrossRefGoogle Scholar
  78. Zevenhuizen, E. (2000). Keeping and scrapping: The story of a Mendelian lecture plate by Hugo de Vries. Annals of Science, 57(4), 329–352.CrossRefGoogle Scholar
  79. Zwart, H. (2008). Understanding nature. Case studies in comparative epistemology. Dordrecht: Springer.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  1. 1.University of Santiago de CompostelaSantiago de CompostelaSpain

Personalised recommendations