Skip to main content

Advertisement

Log in

Determinism and Underdetermination in Genetics: Implications for Students’ Engagement in Argumentation and Epistemic Practices

  • Published:
Science & Education Aims and scope Submit manuscript

Abstract

In the last two decades science studies and science education research have shifted from an interest in products (of science or of learning), to an interest in processes and practices. The focus of this paper is on students’ engagement in epistemic practices (Kelly in Teaching scientific inquiry: Recommendations for research and implementation. Sense Publishers, Rotterdam, pp 99–117, 2008), or on their practical epistemologies (Wickman in Sci Educ 88(3):325–344, 2004). In order to support these practices in genetics classrooms we need to take into account domain-specific features of the epistemology of genetics, in particular issues about determinism and underdetermination. I suggest that certain difficulties may be related to the specific nature of causality in genetics, and in particular to the correspondence between a given set of factors and a range of potential effects, rather than a single one. The paper seeks to bring together recent developments in the epistemology of biology and of genetics, on the one hand, with science education approaches about epistemic practices, on the other. The implications of these perspectives for current challenges in learning genetics are examined, focusing on students’ engagement in epistemic practices, as argumentation, understood as using evidence to evaluate knowledge claims. Engaging in argumentation in genetics classrooms is intertwined with practices such as using genetics models to build explanations, or framing genetics issues in their social context. These challenges are illustrated with studies making part of our research program in the USC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Banet, E., & Ayuso, G. E. (2003). Teaching of biological inheritance and evolution of living beings in secondary schoo. International Journal of Science Education, 25(3), 373–407.

    Article  Google Scholar 

  • Bechtel, W. (1984). The evolution of our understanding of the cell: A study in the dynamics of scientific progress. Studies in History and Philosophy of Science, 15(4), 309–356.

    Article  Google Scholar 

  • Bechtel, W. P., & Hamilton, A. (2007). Reduction, integration, and the unity of science: Natural, behavioral, and social sciences and the humanities. In T. Kuipers (Ed.), Handbook of the philosophy of science: General philosophy of science—focal issues (pp. 377–430). New York: Elsevier.

    Chapter  Google Scholar 

  • Bechtel, W., & Richardson, R. C. (1993). Discovering complexity. Decomposition and localization as strategies in scientific research. Princeton: Princeton University Press.

    Google Scholar 

  • Brannigan, A. (1979). The reification of mendel. Social Studies of Science, 9, 423–454.

    Article  Google Scholar 

  • Brigandt, I. (2011). Explanation in biology: Reduction, pluralism, and explanatory aims. Science & Education. doi:10.1007/s11191-011-9350-7.

  • Brown, A. L. (1992). Design experiments: Theoretical and methodological challenges in creating complex interventions in classroom settings. The Journal of the Learning Sciences, 2(2), 141–178.

    Article  Google Scholar 

  • Campbell, M. (1980). Did de Vries discover the law of segregation independently? Annals of Science, 37, 639–655.

    Article  Google Scholar 

  • Cole, M., & Engeström, Y. (1993). A cultural-historical approach to distributed cognition. In G. Salomon (Ed.) Distributed cognitions. Psychological and educational considerations (pp. 1–46). Cambridge, MA: Cambridge University Press.

  • Comfort, N. C. (1999). “The real point is control”: The reception of Barbara McClintock’s controlling elements. Journal of the History of Biology, 32(1), 133–162.

    Article  Google Scholar 

  • Creath, R., & Maienschein, J. (Eds.). (2000). Biology and epistemology. Cambridge: Cambridge University Press.

    Google Scholar 

  • Darden, L. (1985). Hugo de Vries’s lecture plates and the discovery of segregation. Annals of Science, 42, 233–242.

    Article  Google Scholar 

  • Duschl, R. A., & Grandy, R. E. (2008). Reconsidering the character and role of inquiry in school science: Framing the debates. In R. A. Duschl & R. E. Grandy (Eds.), Teaching scientific inquiry: Recommendations for research and implementation (pp. 1–37). Rotterdam: Sense Publishers.

    Google Scholar 

  • Duschl, R. A., & Grandy, R. (2012). Two views about explicitly teaching nature of science. Science & Education. doi:10.1007/s11191-012-9539-4.

  • Duschl, R. A., & Hamilton, R. (1998). Conceptual change in science and in the learning of science. In B. Fraser & K. Tobin (Eds.), International handbook of science education (pp. 1047–1065). Dordrecht: Kluwer.

    Chapter  Google Scholar 

  • Duschl, R. A., & Jiménez-Aleixandre, M. P. (2012). Epistemic foundations for conceptual change. In S. M. Carver & J. Shrager (Eds.), The journey from child to scientist: Integrating cognitive development and the education sciences (pp. 245–262). Washington, DC: American Psychological Association.

    Chapter  Google Scholar 

  • Elby, A., & Hammer, D. (2001). On the substance of a sophisticated epistemology. Science Education, 85, 554–567.

    Article  Google Scholar 

  • Erduran, S. (2007). Breaking the law: Promoting domain-specificity in chemical education in the context of arguing about the periodic law. Foundations of Chemistry, 9(3), 247–263. doi:10.1007/s10698-007-9036-z.

    Article  Google Scholar 

  • Fairbanks, D., & Rytting, B. (2001). Mendelian controversies: A botanical and historical review. American Journal of Botany, 88, 737–752.

    Article  Google Scholar 

  • Federico-Agraso, M., & Jiménez-Aleixandre, M. P. (2008). Therapeutic cloning? Discourse genres, ethical issues and students’ perceptions. In M. Hammann, M. Reiss, C. Boulter, & S. D. Tunnicliffe (Eds.), Biology in context. Learning and teaching for the twenty-first century (pp. 315–326). London: University of London.

  • Fisher, R. A. (1936). Has Mendel’s work been rediscovered? Annals of Science, 1, 115–137.

    Article  Google Scholar 

  • Franklin, A., Edwards, A. W. F., Fairbanks, D. J., Hart, D. L., & Seidenfield, T. (2008). Ending the mendel-fisher controversy. Pittsburgh: University of Pittsburgh Press.

    Google Scholar 

  • Giere, R. N. (1988). Explaining science: A cognitive approach. Chicago: University of Chicago Press.

    Book  Google Scholar 

  • Giere, R. N. (1992). Cognitive models of science. Minneapolis, MN: University of Minnesota Press.

    Google Scholar 

  • Habermas, J. (1981–1984). The theory of communicative action. Boston: Beacon Press.

  • Hamza, K. M., & Wickman, P.-O. (2008). Describing and analyzing learning in action: An empirical study of the importance of misconceptions in learning science. Science Education, 92, 141–164.

    Article  Google Scholar 

  • Hofer, B. K., & Pintrich, P. R. (1997). The development of epistemological theories: Beliefs about knowledge and knowing and their relation to learning. Review of Educational Research, 67(1), 88–140.

    Article  Google Scholar 

  • Hwang, W. S., Ryu, Y. J., Park, J. H., Park, E. S., Lee, E. G., Koo, J. M., et al. (2004). Evidence of a pluripotent human embryonic stem cell line derived from a cloned blastocyst. Science, 303, 1669–1674.

    Article  Google Scholar 

  • Jiménez-Aleixandre, M. P. (1994). Teaching evolution and natural selection: A look at textbooks and teachers. Journal of Research in Science Teaching, 31, 519–535.

    Article  Google Scholar 

  • Jiménez-Aleixandre, M. P., Bugallo, Rodríguez. A., & Duschl, R. A. (2000). ‘Doing the lesson’ or ‘Doing science’: Argument in high school genetics. Science Education, 84, 757–792.

    Article  Google Scholar 

  • Jiménez-Aleixandre, M. P., & Erduran, S. (2008). Argumentation in science education: An overview. In S. Erduran & M. P. Jiménez-Aleixandre (Eds.), Argumentation in science education: Perspectives from classroom-based research (pp. 3–27). Dordrecht: Springer.

    Google Scholar 

  • Jiménez-Aleixandre, M. P., & Federico-Agraso, M. (2009). Justification and persuasion about cloning: Arguments in Hwang’s paper and journalistic reported versions. Research in Science Education, 39, 331–347.

    Article  Google Scholar 

  • Jiménez-Aleixandre, M. P., & Puig, B. (2012). Argumentation, evidence evaluation and critical thinking. In B. Fraser, K. Tobin, & C. McRobbie (Eds.), Second international handbook of science education (pp. 1001–1015). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Jiménez-Aleixandre, M. P., & Reigosa, C. (2006). Contextualizing practices across epistemic levels in the chemistry laboratory. Science Education, 90, 707–733.

    Google Scholar 

  • Kampourakis, K. (2010). Mendel and the path to genetics: Portraying science as a social process. Science & Education. doi:10.1007/s11191-010-9323-2.

  • Kampourakis, K., & Zogza, V. (2008). Students’ intuitive explanations of the causes of homologies and adaptations. Science & Education, 17, 27–47.

    Article  Google Scholar 

  • Keller, E. F. (1983). A feeling for the organism. The life and work of Barbara McClintock. New York: W. H. Freeman.

    Google Scholar 

  • Keller, E. F. (2000). Making sense of life: Explanation in developmental biology. In R. Creath & J. Maienschein (Eds.), Biology and epistemology (pp. 244–260). Cambridge: Cambridge University Press.

    Google Scholar 

  • Keller, E. F. (2010). The mirage of a space between nature and nurture. London: Duke University Press.

    Book  Google Scholar 

  • Kelly, G. J. (2008). Inquiry, activity and epistemic practice. In R. A. Duschl & R. E. Grandy (Eds.), Teaching scientific inquiry: Recommendations for research and implementation (pp. 99–117). Rotterdam: Sense Publishers.

    Google Scholar 

  • Kelly, G. J., Carlsen, W. S., & Cunningham, C. M. (1993). Science education in sociocultural context: Perspectives from the sociology of science. Science Education., 77, 207–220.

    Article  Google Scholar 

  • Kelly, G. J., Chen, C., & Crawford, T. (1998). Methodological considerations for studying science-in-the-making in educational settings. Research in Science Education, 28(1), 23–49.

    Article  Google Scholar 

  • Kelly, G., McDonald, S., & Wickman, P. (2012). Science learning and epistemology. In B. Fraser & K. Tobin (Eds.), Second international handbook of science education (pp. 281–291). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Kelly, G. J., & Takao, A. (2002). Epistemic levels in argument: An analysis of university oceanography students’ use of evidence in writing. Science Education, 86, 314–342.

    Article  Google Scholar 

  • Lewontin, R. C. (1991). Biology as ideology. The doctrine of DNA. New York: Harper Collins.

    Google Scholar 

  • Lewontin, R. C. (2000). What do population geneticists know and how do they know it? In R. Creath & J. Maienschein (Eds.), Biology and epistemology (pp. 191–214). Cambridge: Cambridge University Press.

    Google Scholar 

  • Lewontin, R. C., Rose, S., & Kamin, J. (1984). Not in our genes. Biology, ideology and human nature. New York: Pantheon books.

    Google Scholar 

  • Longino, H. E. (1990). Science as social knowledge: Values and objectivity in scientific inquiry. Princeton: Princeton University Press.

    Google Scholar 

  • Longino, H. E. (2000). Toward an epistemology for biological pluralism. In R. Creath & J. Maienschein (Eds.), Biology and epistemology (pp. 261–286). Cambridge: Cambridge University Press.

    Google Scholar 

  • Longino, H. E. (2002). The fate of knowledge. Princeton: Princeton University Press.

    Google Scholar 

  • Longino, H. E. (2008). Philosophical issues and next steps for research. In R. A. Duschl & R. E. Grandy (Eds.), Teaching scientific inquiry: Recommendations for research and implementation (pp. 134–137). Rotterdam: Sense Publishers.

    Google Scholar 

  • Looijen, R. C. (2000). Holism and reductionism in biology and ecology. Dordrecht: Kluwer.

    Book  Google Scholar 

  • MacRoberts, M. (1985). Was Mendel’s paper on Pisum neglected or unknown? Annals of Science, 42, 339–345.

    Article  Google Scholar 

  • Magnus, D. (2000). Down the primrose path: Competing epistemologies in early twentieth-century biology. In R. Creath & J. Maienschein (Eds.), Biology and epistemology (pp. 91–121). Cambridge: Cambridge University Press.

    Google Scholar 

  • Magnus, D., & Cho, M. K. (2005). Issues in oocyte donation for stem cell research. Science, 308, 1747–1748.

    Article  Google Scholar 

  • Manuelidis, L. (2007). A 25 nm virion is the likely cause of transmissible spongiform encephalopathies. Journal of Cellular Biochemistry, 100(4), 897–915.

    Article  Google Scholar 

  • Mayr, E. (1997). This is biology. The science of the living world. Cambridge (MA): Harvard University Press.

    Google Scholar 

  • McClintock, B. (1950). The origin and behavior of mutable loci in maize. Proceedings of the National Academy of Sciences of the United States of America, 36(6), 344–355. doi:10.1073/pnas.36.6.344.

    Article  Google Scholar 

  • McClintock, B. (1953). Induction of instability at selected loci in maize. Genetics, 38(6), 579–599.

    Google Scholar 

  • Mendel, G. (1866). Versuche über pflanzen-hybriden. Verhandlungen des Naturforschenden Vereines in Brunn. 4, 3–47. (Reproduced in E. von Tschermak, Ed., Leipzig: Engelmann, 1913, pp. 3–46).

  • Mitchell, S. (2003). Biological complexity and integrative pluralism. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Olby, R. C. (1979). Mendel no Mendelian? History of Science, 17, 53–72.

    Google Scholar 

  • Piaget, J., & Inhelder, B. (1951). La genèse de l’idée de hasard chez l’enfant, 2nd edn, 1974. Paris: Presses Universitaires de France.

  • Piquemal, J. (1965). Aspects de la pensée de Mendel (Aspects of Mendel’s thinking). Paris: Palais de la Découverte (Impr. Alençonnaise).

  • Prusiner, S. B. (1982). Novel proteinaceous infectious particles cause scrapie. Science, 216(4542), 136–144. doi:10.1126/science.6801762.

    Article  Google Scholar 

  • Puig, B., & Jiménez-Aleixandre, M. P. (2011). Different music to the same score: Teaching about genes, environment and human performances. In T. D. Sadler (Ed.), Socio-scientific issues in the classroom: Teaching, learning and research (pp. 201–238). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Rigotti, E., & Greco-Morasso, S. (2009). Argumentation as an object of interest and as a social and cultural resource. In N. Muller-Mirza & A.-N. Perret-Clermont (Eds.), Argumentation and education: Theoretical foundations and practices (pp. 9–66). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Rudolph, J. L., & Stewart, J. (1998). Evolution and the nature of science: On the historical discord and its implications for education. Journal of Research in Science Teaching, 35(10), 1069–1089.

    Article  Google Scholar 

  • Schaffner, K. (1993). Discovery and explanation in biology and medicine. Chicago: University of Chicago Press.

    Google Scholar 

  • Svoboda, J., & Passmore, C. (2011). The strategies of modeling in biology education. Science & Education. doi:10.1007/s11191-011-9425-5.

  • Venter, J. C., et al. (2001). The sequence of the human genome. Science, 292(5507), 1304–1351.

    Article  Google Scholar 

  • Vicedo, M. (2000). Experimentation in early genetics: The implications of the historical character of science for scientific realism. In R. Creath & J. Maienschein (Eds.), Biology and epistemology (pp. 215–243). Cambridge: Cambridge University Press.

    Google Scholar 

  • Vygotsky, L. S. (1978). Mind in society: The development of higher psychological processes. Cambridge, MA: Harvard University Press.

    Google Scholar 

  • Weiss, K. M. (2009). Pieces of eight! Evolutionary Anthropology, 18, 125–130.

    Article  Google Scholar 

  • Wickman, P.-O. (2004). The practical epistemologies of the classroom: A study of laboratory work. Science Education, 88(3), 325–344.

    Article  Google Scholar 

  • Wickman, P. -O. (2011). Practical epistemologies as beliefs or as actions. Paper presented at the European Science Education Research Association (ESERA) conference. Lyon, September.

  • Wickman, P.-O., & Östman, L. (2002). Learning as discourse change: A sociocultural mechanism. Science Education, 86(5), 601–623.

    Article  Google Scholar 

  • Zevenhuizen, E. (2000). Keeping and scrapping: The story of a Mendelian lecture plate by Hugo de Vries. Annals of Science, 57(4), 329–352.

    Article  Google Scholar 

  • Zwart, H. (2008). Understanding nature. Case studies in comparative epistemology. Dordrecht: Springer.

    Google Scholar 

Download references

Acknowledgments

Work supported by the Spanish Ministry of Science and Innovation (Ministerio de Ciencia e Innovación), code EDU2009-13890-C02-01. The author gratefully acknowledges the work from the doctoral dissertations of Ánxela Bugallo-Rodríguez, Marta Federico-Agraso and Blanca Puig, discussed in the paper. Thanks also for the helpful suggestions of Kostas Kampourakis, Thomas Reydon and Science & Education’s anonymous reviewers to the first draft.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María Pilar Jiménez-Aleixandre.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jiménez-Aleixandre, M.P. Determinism and Underdetermination in Genetics: Implications for Students’ Engagement in Argumentation and Epistemic Practices. Sci & Educ 23, 465–484 (2014). https://doi.org/10.1007/s11191-012-9561-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11191-012-9561-6

Keywords

Navigation