Science & Education

, Volume 22, Issue 5, pp 951–1000 | Cite as

Ernst Mach and George Sarton’s Successors: The Implicit Role Model of Teaching Science in USA and Elsewhere, Part II



George Sarton had a strong influence on modern history of science. The method he pursued throughout his life was the method he had discovered in Ernst Mach’s Mechanics when he was a student in Ghent. Sarton was in fact throughout his life implementing a research program inspired by the epistemology of Mach. Sarton in turn inspired many others in several generations (James Conant, Thomas Kuhn, Gerald Holton, etc.). What were the origins of these ideas in Mach and what can this origin tell us about the history of science and science education nowadays? Which ideas proved to be successful and which ones need to be improved upon? The following article will elaborate the epistemological questions, which Charles Darwin’s “Origin” raised concerning human knowledge and scientific knowledge and which led Mach to adapt the concept of what is “empirical” in contrast to metaphysical a priori assumptions a second time after Galileo. On this basis Sarton proposed “genesis and development” as the major goal of his journal Isis. Mach had elaborated this epistemology in La Connaissance et l’Erreur (Knowledge and Error), which Sarton read in 1911 (Hiebert in Knowledge and error. Reidel, Dordrecht, 1976; de Mey in George Sarton centennial. Communication & Cognition, Ghent, pp. 3–6, 1984). Accordingly for Sarton, history becomes not only a subject of science, but a method of science education. Culture—and science as part of culture—is a result of a genetic process. History of science shapes and is shaped by science and science education in a reciprocal process. Its epistemology needs to be adapted to scientific facts and the philosophy of science. Sarton was well aware of the need to develop the history of science and the philosophy of science along the lines of this reciprocal process. It was a very fruitful basis, but a specific part of it Sarton did not elaborate further, namely the erkenntnis-theory and psychology of science education. This proved to be a crucial missing element for all of science education in Sarton’s succession, especially in the US. Looking again at the origins of the central questions in the thinking of Mach, which provided the basis and gave rise to Sarton’s research program, will help in resolving current epistemic and methodological difficulties, contradictions and impasses in science education influenced by Sarton. The difficulties in science education will prevail as long as the omissions from their Machian origins are not systematically recovered and reintegrated.


Science Education World View Spontaneous Generation School Book Empirical Meaning 



I would like to thank especially Marc de Mey, Gerald Holton, Richard Kremer, Michal Kokowski, Lisa Martin and Edgar Jenkins for the information they provided on many specific historical details discussed in this article as well as Gabriel Szász for his suggestion of the “bizarreness” property of theory and the experiment of a Machian course in Astronomy. Also the College Archives and Corporate Records Unit at Imperial College London, especially Anne Barrett and Catherine Harpham, as well as the British Library, especially Jeremy Nagle, and Emilie Tesinska in Prague have been very supportive in aiding the research and accessing some of the rarer items. Additional thanks goes to the Philosophical Archive at the University of Konstanz for permitting the translation of Mach’s teacher instruction (Appendix 1 in part I). Michael Matthews helped with many suggestions, which added to the initial version and shifted the general focus of the article. I would also like to thank Kaarle Kurki-Suonio and my father, Karl Hayo Siemsen for their invaluable help in proofreading.


  1. (The years as provided in the references indicate respectively the 1st edition/the last updated edition/the edition used by the author).Google Scholar
  2. Ahlgren, A., & Walberg, H. J. (1973). Changing attitudes towards science among adolescents. Nature, 245, 187–190.CrossRefGoogle Scholar
  3. Aristotle (about 350 B.C./1930). In W. D. Ross (Ed.), The works of Aristotle. Organon and other collected works edition. Oxford: Oxford University Press.Google Scholar
  4. Armstrong, H. E. (1934). The First Frankland Memorial Oration. The Lancastrian Frankland Society. Journal of the Society of Chemical Industry, 53(21), 459–466.CrossRefGoogle Scholar
  5. Berkeley, G. (1705-8/1871/1920). The works of George Berkeley. In four volumes, Vol. I. Oxford: Clarendon Press.Google Scholar
  6. Binet, A. (1911/1975). Modern ideas about children. Albi: Suzanne Heisler.Google Scholar
  7. Bradley, J. (1975). Where does theory begin? Education in Chemistry, 12, 8–11.Google Scholar
  8. Bruner, J. (2004). A short history of psychological theories of learning. Daedalus, 133(1), 13–20.CrossRefGoogle Scholar
  9. Bruner, J. S., Olver, R. R., & Greenfield, P. M., et al. (1966; 1967). Studies in cognitive growthA collaboration at the center for cognitive studies. New York: Wiley.Google Scholar
  10. Bühler, C. (1935). Replik. Zeitschrift für Psychologie, 135(1–3), 161–163.Google Scholar
  11. Cole, M. (2000). Bruner and hybridity. Talk Presented at the Meeting of the American Anthropological Association. San Francisco, 17 Nov 2000.Google Scholar
  12. Conant, J. B. (Ed.) (1945). General education in a free society. Cambridge: Harvard University Press.Google Scholar
  13. Conant, J. B. (1951). Greetings to the National Conference of the Institute for the Unity of Science, Boston, Massachusetts, April 1950. Proceedings of the American Academy of Arts and Sciences, 80, 9–13.Google Scholar
  14. Conant, J. B. (Ed.) (1957a). Harvard case histories in experimental science (Vol. 1). Cambridge: Harvard University Press.Google Scholar
  15. Conant, J. B. (1957b). George Sarton and Harvard University. Isis, 48(3), 301–305.CrossRefGoogle Scholar
  16. Darling-Hammond, L. (2009). Steady work: How Finland is building a strong teaching and learning system. In James A. Banks (Ed.), The flat world and education. How America’s commitment to equity will determine our future. New York: Columbia University.Google Scholar
  17. de Mey, M. (1984). George Sarton’s concept of science studies at ghent during his time and in ours. In W. Callebaut et al. (Eds.), George Sarton Centennial. Ghent, Communication & Cognition, pp. 3–6.Google Scholar
  18. Duhem, P. (1908/1996). Sozein Ta Phainomena. In R. Ariew, P. Baker (Eds.), Essays in the history and philosophy of science. Indianapolis: Hackett.Google Scholar
  19. Einstein, A. (1916). Ernst Mach. Physikalische Zeitschrift, 17(7), 101–104.Google Scholar
  20. Euler, M. (2006). Revitalizing Ernst Mach’s popular scientific lectures. Science & Education. doi: 10.1007/s11191-006-9020-3
  21. Feist, G. J. (2006). The psychology of science and the origins of the scientific mind. New Haven: Yale University Press.Google Scholar
  22. Frank, P. (1951). Introductory remarks. Proceedings of the American Academy of Arts and Sciences, 80, 5–8.CrossRefGoogle Scholar
  23. Goldstein, K. (1940/1951). Human nature in the light of psychopathology . Cambridge: Harvard University Press.Google Scholar
  24. Goldstein, J. S. (1992). A different sort of time. The life of Jerrold R. Zacharias. Cambridge: MIT Press.Google Scholar
  25. Haeckel, E. (1905). Der Kampf um den Entwicklungs-Gedanken: Drei Vorträge, gehalten am 14., 16. und 19. April 1905 im Saale der Sing-Akademie zu Berlin. Berlin: Reimer.Google Scholar
  26. Hayes, P. J. (1978). The naïve physics manifesto. In D. Mitchie (Ed.), Expert systems in the micro-electronic age. Edinburg: Edinburg University Press.Google Scholar
  27. Hering, E. (1870/1902). On memory. La Salle: Open Court.Google Scholar
  28. Hiebert, E. N. (1905/1976). Introduction. In Mach, E: Knowledge and error. Dordrecht: Reidel.Google Scholar
  29. Hohenester, A. (1988). Ernst Mach als Didaktiker, Lehrbuch- und Lehrplanverfasser. In R. Haller & F. Stadler (Eds.), Ernst Mach Werk und Wirkung. Vienna: Hölder-Pichler-Tempski.Google Scholar
  30. Holton, G. (1952/1973). Introduction to concepts and theories in physical science. Reading, MA: Addison-Wesley.Google Scholar
  31. Holton, G. (1992). Ernst Mach and the Fortunes of positivism in America. Isis, 83(1), 27–60.CrossRefGoogle Scholar
  32. Holton, G. (2003). The project physics course. Then and now. Science & Education, 12(8), 779–786.CrossRefGoogle Scholar
  33. James, W. (1884/1912). Absolutism and empiricism. In Essays in radical empiricism (pp. 266–280). New York: Longmans, Green.Google Scholar
  34. James, W. (1905/1967/1977). A world of pure experience. In J. J. McDermott (Ed.), The writings of William JamesA comprehensive edition (pp. 194–213). Chicago: University of Chicago Press.Google Scholar
  35. Jenkins, E. W. (1979). From Armstrong to Nuffield. Studies in twentieth-century science education in England and Wales. London: Murray.Google Scholar
  36. Jennison, B., & Ogborn, J. (Eds.) (1994). Wonder and delight. Essays in science education in honour of the life and work of Eric Rogers 1902–1990. London: Institute of Physics Publishing.Google Scholar
  37. Kurki-Suonio, K. (2011). Principles supporting the perceptional teaching of physics: A “practical teaching philosophy”. Science & Education, 20, 211–243.CrossRefGoogle Scholar
  38. Laurikainen, K. V. (1989). Beyond the atom: The philosophical thought of Wolfgang Pauli. Berlin: Springer.Google Scholar
  39. Lewis, J. L. (1994). Eric Rogers and the Nuffield Physics project. In B. Jennison, & J. Ogborn, (Eds.), Wonder and delight. Essays in science education in honour of the life and work of Eric Rogers 1902–1990. London: Institute of Physics Publishing, pp. 153–162.Google Scholar
  40. Lipmann, O., & Bogen, H. (1923). Naive Physik. Theoretische und experimentelle Untersuchungen über die Fähigkeit zu intellektuellem Handeln. Leipzig: Barth.Google Scholar
  41. Luchins, A. S. (1993). On being Wertheimer’s student. A contribution to the eighth international Scientific Convention of the Society for Gestalt Theory and its Applications (GTA) at the University of Cologne, Friday, March 26, 1993.Google Scholar
  42. Mach, E. (1866). Einleitung in die Helmholtz’sche Musiktheorie—Populär für Musiker dargestellt. Graz: Leuschner & Lubensky.Google Scholar
  43. Mach, E. (1872/1911). History and root of the principle of the conservation of energy. La Salle: Open Court.Google Scholar
  44. Mach, E. (1873/1969). Zur Geschichte des Arbeitsbegriffes. In J. Thiele (Ed.), Ernst Mach. Abhandlungen. Amsterdam: Bonset.Google Scholar
  45. Mach, E. (1876). Entwurf einer Lehrinstruction für den physikalischen Unterricht an Mittelschulen. Document from the Philosophical Archive at the University of Konstanz.Google Scholar
  46. Mach, E. (1883/1933/1976). Die Mechanikhistorisch-kritisch dargestellt. (reprint 9th ed), Darmstadt: Wissenschaftliche Buchgesellschaft.Google Scholar
  47. Mach, E. (1883/1893/1915). The science of mechanicsA critical and historical account of its development. Supplement to the Third English Edition by Philip E. B. Jourdain. Chicago: Open Court.Google Scholar
  48. Mach, E. (1883/1888). Transformation and adaptation in scientific thought. The Open Court: Jul 12 1888, 2/46, APS Online IIA.Google Scholar
  49. Mach, E. (1886/1919). Die Analyse der Empfindungen und das Verhältnis vom Physischen zum Psychischen. Jena: Fischer.Google Scholar
  50. Mach, E. (1890). Über das psychologische und logische Moment im Naturwissenschaftlichen Unterricht. Zeitschrift für den physikalischen und chemischen Unterricht, 4/1, October 1890: 1–5.Google Scholar
  51. Mach, E. (1893a/1960). The science of mechanics: A critical and historical account of its development. La Salle: Open Court.Google Scholar
  52. Mach, E. (1893b/1986). Popular scientific lectures. La Salle: Open Court.Google Scholar
  53. Mach, E. (1905/1926/2002). Erkenntnis und Irrtum: Skizzen zur Psychologie der Forschung. 5th Edition, Leipzig, Berlin: reprint by rePRINT.Google Scholar
  54. Mach, E. (1905/1976). Knowledge and error. Dordrecht: Reidel.Google Scholar
  55. Mach, E. (1914). The analysis of sensations and the relation of the physical to the psychical. Chicago: Open Court.Google Scholar
  56. Mach, E. (1915). Kultur und Mechanik. Stuttgart: Spemann.Google Scholar
  57. Mach, E. (1920). Letters to Gabriele Rabel. In G. Rabel (Eds.), Mach und die „Realität der Außenwelt“. Physikalische Zeitschrift, XXI, pp. 433–437.Google Scholar
  58. Mach, E., & Odstrčil, J. (1887). Grundriss der Naturlehre für die unteren Classen der Mittelschulen. Ausgabe für Gymnasien. Prague: Tempsky.Google Scholar
  59. Maslov, A. H. (1966/1969). The psychology of science. A reconnaissance. Chicago: Gateway.Google Scholar
  60. Matthews, M. (1994). Science teaching: The role of history and philosophy of science. New York: Routledge.Google Scholar
  61. Matthews, M. R. (2000). Time for science education: How teaching the history and philosophy of pendulum motion can contribute to science literacy. New York: Kluwer.Google Scholar
  62. OECD. (2006). Education at a glance 2006Executive summary, Cited 21 Aug 2007.
  63. OECD. (2007). PISA 2006—Science competencies for tomorrow’s world, Volume I and II, Cited 12 Jun 2008 (The other PISA studies are equally interesting, but will not be cited here, as the general issues discussed here can be taken from any single one of them).
  64. Plato (360–380B.C./1871/1892). The dialogues of Plato. Translated and commented by Jowett, B. Third Edition. Oxford: Oxford University Press.Google Scholar
  65. Project Physics. (1971). About the project physics course. New York: Holt, Rinehart and Winston.Google Scholar
  66. PSSC. (1965/1976). Physics. Fourth Edition. In U. Haber-Schaim, J. B.Cross, J. H. Dodge & J. A. Walter (Eds.), Lexington, MA: Heath.Google Scholar
  67. Rogers, E. M. (1960/1977). Physics for the inquiring mind. The methods, nature and philosophy of physical science. Princeton: Princeton University Press.Google Scholar
  68. Rubin, E. (1921). Visuell wahrgenommene Figuren. Studien in psychologischer Analyse. Copenhagen: Gyldendalske Boghandel.Google Scholar
  69. Sarton, G. (1916). The history of science. The Monist, 26, 321–365.CrossRefGoogle Scholar
  70. Sarton, G. (1918). The teaching of the history of science. The Scientific Monthly, 7(3), 193–211.Google Scholar
  71. Sarton, G. (1922b/1960). The teaching of the history of science. Isis IV/2: 225-249.Google Scholar
  72. Sarton, G. (1931/1962). The history of science and the history of civilization. In The history of science and the new humanism. Bloomington: Indiana University Press.Google Scholar
  73. Sarton, G. (1959). Hellenistic science and culture in the last three centuries B. C. Cambridge: Harvard University Press.Google Scholar
  74. Schoenfeld, A. H. (2004). The math wars. Educational Policy, 18(1), 253–286.CrossRefGoogle Scholar
  75. Schwarzwald, E. (2005). Eugenie (Genia) Schwarzwald. In E. Früh (Ed.), Spuren und Überbleibsel. Bio-bibliographische Blätter, 63, September 2005.Google Scholar
  76. Semon, R. (1923). Mnemic psychology. London: Allen & Unwin.Google Scholar
  77. Siemsen, K. H. (1981). Genetisch-adaptativ aufgebauter rechnergestützter Kleingruppen-unterricht. Begründungen für einen genetischen Unterricht. Frankfurt: Lang.Google Scholar
  78. Siemsen, H. (2010a). Intuition in the scientific process and the intuitive “error” of science. In A. M. Columbus (Ed.), Advances in psychology research (Vol. 72, pp. 1–62). Hauppauge: Nova Science.Google Scholar
  79. Siemsen, H. (2010b). The Mach-Planck debate revisited: Democratization of science or elite knowledge? Public Understanding of Science, 19(3), 293–310.Google Scholar
  80. Siemsen, H. (2010c). Alfred Binet and Ernst Mach. Similarities, Differences and Influences. University of Nancy, Revue Recherches & Éducations, 3/2010, pp 352–403.Google Scholar
  81. Siemsen, H. (2010d). Erkenntnis-theory and science education—an intuitive contribution to the Festschrift for the 85th birthday of Solomon Marcus. In H. Spandonide, G. Paun (Eds.), Meetings with Solomon Marcus to his 85th Birthday. Bucuresti: Editura Spandugino 2010.Google Scholar
  82. Siemsen, H. (2011a). Ernst Mach and the epistemological ideas specific for Finnish science education. Science & Education, 20, 245–291.CrossRefGoogle Scholar
  83. Siemsen, H. (2011b). John T. Blackmore: Two recent trilogies on Ernst Mach. In B. F. McGuiness (Ed.), Friedrich Waismann. Causality and logical positivism. Vienna Circle Institute Yearbook, (Vol. 15, pp. 311–321). Springer, Berlin.Google Scholar
  84. Siemsen, H. (2011d). Mach’s Science Education, the PISA Study and Czech Science Education. In A. Mizerova (Ed.), Ernst Mach: FyzikaFilosofieVzdělávání. Brno: Masaryk University Press, in print.Google Scholar
  85. Siemsen, K. H., Schumacher, W., Wiebe, J., & Siemsen, H. (2012). Dokumentation des Projektstudiums nach 10 Jahren. Working Paper.Google Scholar
  86. Siemsen, H., & Siemsen, K. H. (2009). Resettling the thoughts of Ernst Mach and the Vienna circle to Europe—the cases of Finland and Germany. Science & Education, 18(3), 299–323.CrossRefGoogle Scholar
  87. Siemsen, H., & Siemsen, K. H. (2011). The Sensualism of Ernst Mach, Teaching Science. Talk at the 3rd International Symposium in Philosophy of Science, University of Évora, 6th–7th of May 2011. Proceedings upcoming.Google Scholar
  88. Sniegowski, P. D., Gerrish, P. J., Johnson, T., & Shaver, A. (2000). The evolution of mutation rates: separating causes from consequences. Bioessays, 22(12), 1057–1066.CrossRefGoogle Scholar
  89. Sterrett, S. G. (1998). Sounds like Light. Einstein’s special theory of relativity and mach’s work in acoustics and aerodynamics. Studies in the History and Philosophy of Modern Physics, 29(1), 1–35.CrossRefGoogle Scholar
  90. Thiele, J. (1978). Wissenschaftliche Kommunikation: Die Korrespondenz Ernst Machs. Kastellaun: Henn.Google Scholar
  91. von Ehrenfels, C. (1890). Über Gestaltqualitäten. Vierteljahresschrift für wissenschaftliche Philosophie.Google Scholar
  92. Wertheimer, M. (1924/1938) Gestalt theory. In W. D. Ellis (Ed.), A source book of Gestalt psychology. London: Kegan, Trench, Trubner, pp. 1–11.Google Scholar
  93. Wilczek, F. (2002). On the world’s numerical recipe. Daedalus, 131/1, 142–147.Google Scholar
  94. Wilczek, F. (2004a). Whence the Force of F = ma? I: Culture Shock. Physics Google Scholar
  95. Wilczek, F. (2004b). Total relativity: Mach 2004. Physics Today, 10–11.Google Scholar
  96. Wittenberg, A. I. (1968). The prime imperatives: Priorities in education. Toronto: Clarke, Irwin & Company.Google Scholar
  97. Zilsel, E. (1976). Die sozialen Ursprünge der neuzeitlichen Wissenschaft. W. Krohn (Ed.), Frankfurt (M): Suhrkamp.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.FHOOWWadgassenGermany

Personalised recommendations