Skip to main content

Advertisement

Log in

Molecules and heterostructures at TiO2 surface: the cases of H2O, CO2, and organic and inorganic sensitizers

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

TiO2-based (nano)materials are widely exploited in systems and devices of actual technological interest, because of their outstanding physical and chemical properties, including chemical stability, long durability, non-toxicity abundance and low cost. For this, they are considered ideal for many practical applications including energy-related devices, photocatalysis, but are known to have some limitations. To improve their performance and then to find more efficient materials in the energy and environmental remediation fields, at first the investigation of the surface/interface properties at the molecular scale is required. In this contribution, a critical review of advances in the field of the TiO2 surface chemistry, highlighting the role of interactions at the molecular level, grafting and assembling/fabrication of suitable heterostructures, is reported. A few case studies, from the H2O, CO2 and acetylene interactions until to the grafting of organic/inorganic systems (graphene, MoS2) at the TiO2 surface, are highlighted. The discussed case studies are argued from their principles to the technological relevance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Adapted from [94]

Fig. 2

Reprinted with permission from Ref [109]

Fig. 3

Adapted from Ref. [112]

Fig. 4

Reprinted with permission from Ref. [114]

Fig. 5
Fig. 6

Unpublished Figure reporting results published in Ref. [115]

Fig. 7

Reproduced with permission from Ref. [125]

Scheme 1

Adapted from Ref. [133]

Scheme 2

Adapted from Ref. [137]

Fig. 8

Adapted from Ref. [138]

Fig. 9

Adapted from Ref. [138]

Scheme 3

Adapted from Ref. [138]

Scheme 4

Adapted from Ref. [139]

Fig. 10

Reproduced with permission from Ref. [70]

Fig. 11

Reproduced with permission from Ref. [79]

Fig. 12

Reproduced with permission from Ref. [146]

Fig. 13

Reproduced with permission from Ref. [150]. (Color figure online)

Similar content being viewed by others

References

  1. A. Fujishima, K. Honda, Nature 238, 37 (1972)

    CAS  Google Scholar 

  2. A. Tanaka, K. Teramura, S. Hosokawa, H. Kominami, T. Tanaka, Chem. Sci. 8, 2574 (2017)

    CAS  PubMed  PubMed Central  Google Scholar 

  3. M. Kitano, M. Matsuoka, T. Hosoda, M. Ueshima, M. Anpo, Res. Chem. Intermed. 34, 577 (2008)

    CAS  Google Scholar 

  4. Y. Yoshida, M. Matsuoka, S.C. Moon, H. Mametsuka, E. Suzuki, M. Anpo, Res. Chem. Intermed. 26, 567 (2000)

    CAS  Google Scholar 

  5. W.J. Feng, L.Y. Lin, H.J. Li, B. Chi, J. Pu, J. Li, Int. J. Hydrogen Energy 42, 3938 (2017)

    CAS  Google Scholar 

  6. S. Onsuratoom, S. Chavadej, T. Sreethawong, Int. J. Hydrogen Energy 36, 5246 (2011)

    CAS  Google Scholar 

  7. T.V. Nguyen, D.J. Choi, O.B. Yang, Res. Chem. Intermed. 31, 483 (2005)

    CAS  Google Scholar 

  8. B. Abdollahi, A. Shakeri, S. Aber, M. Sharifi Bonab, Res. Chem. Intermed. 44, 1505 (2018)

    CAS  Google Scholar 

  9. Z. Boutamine, O. Hamdaoui, S. Merouani, Res. Chem. Intermed. 43, 1709 (2017)

    CAS  Google Scholar 

  10. L. Cermenati, A. Albini, P. Pichat, C. Guillard, Res. Chem. Intermed. 26, 221 (2000)

    CAS  Google Scholar 

  11. D. Mas, P. Pichat, C. Guillard, Res. Chem. Intermed. 23, 275 (1997)

    CAS  Google Scholar 

  12. L. Amalric, C. Guillard, P. Pichat, Res. Chem. Intermed. 21, 33 (1995)

    CAS  Google Scholar 

  13. C. McCullagh, J.M.C. Robertson, D.W. Bahnemann, P.K.J. Robertson, Res. Chem. Intermed. 33, 359 (2007)

    CAS  Google Scholar 

  14. A.A. Ashkarran, M. Ghavamipour, H. Hamidinezhad, H. Haddadi, Res. Chem. Intermed. 41, 7299 (2015)

    CAS  Google Scholar 

  15. R. Wang, K. Hashimoto, A. Fujishima, M. Chikuni, E. Kojima, A. Kitamura, M. Shimohigoshi, T. Watanabe, Nature 388, 431 (1997)

    CAS  Google Scholar 

  16. A. Fujishima, K. Hashimoto, T. Watanabe, TiO2 photocatalysis fundamentals and applications (BKC Inc., Tokyo, 1999)

    Google Scholar 

  17. A. Fujishima, T.N. Rao, D.A. Tryk, J. Photochem. Photob. C Photochem. Rev. 1, 1 (2000)

    CAS  Google Scholar 

  18. H. Nishikiori, M. Tagahara, L. Mukoyama, T. Fujii, Res. Chem. Intermed. 36, 947 (2010)

    CAS  Google Scholar 

  19. S. Remiro-Buenamanana, H. Garcia, ChemCatChem 11, 342 (2019)

    CAS  Google Scholar 

  20. W.G. Tu, Y. Zhou, Z.G. Zou, Adv. Mater. 26, 4607 (2014)

    CAS  PubMed  Google Scholar 

  21. V. Jeyalakshmi, K. Rajalakshmi, R. Mahalakshmy, K.R. Krishnamurthy, B. Viswanathan, Res. Chem. Intermed. 39, 2565 (2013)

    CAS  Google Scholar 

  22. Y. Yamazaki, H. Takeda, O. Ishitani, J. Photochem. Photobiol. C-Photochem. Rev. 25, 106 (2015)

    CAS  Google Scholar 

  23. B. Chen, Y. Meng, J. Sha, C. Zhong, W. Hu, N. Zhao, Nanoscale 10, 34 (2018)

    CAS  Google Scholar 

  24. U. Diebold, Appl. Phys. A 76, 681 (2003)

    CAS  Google Scholar 

  25. U. Diebold, Surf. Sci. Rep. 48, 53 (2003)

    CAS  Google Scholar 

  26. X.-Q. Gong, A. Selloni, M. Batzill, U. Diebold, Nat. Mater. 5, 665 (2006)

    CAS  PubMed  Google Scholar 

  27. Y. Kubokawa, M. Anpo, Stud. Surf. Sci. Catal. 21, 127 (1985)

    CAS  Google Scholar 

  28. M. Anpo, M. Takeuchi, J. Catal. 216, 505 (2003)

    CAS  Google Scholar 

  29. H.G. Yang, C.H. Sun, S.Z. Qiao, J. Zou, G. Liu, S.C. Smith, H.M. Cheng, G.Q. Lu, Nature 453, 638 (2008)

    CAS  PubMed  Google Scholar 

  30. A. Selloni, Nat. Mater. 7, 613 (2008)

    CAS  PubMed  Google Scholar 

  31. R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, Y. Taga, Science 293, 269 (2001)

    CAS  PubMed  Google Scholar 

  32. F. Cesano, D. Pellerej, D. Scarano, G. Ricchiardi, A. Zecchina, J. Photochem. Photob. A-Chem 242, 51 (2012)

    CAS  Google Scholar 

  33. F. Cesano, I. Rattalino, F. Bardelli, A. Sanginario, A. Gianturco, A. Veca, C. Viazzi, P. Castelli, D. Scarano, A. Zecchina, Carbon 61, 63 (2013)

    CAS  Google Scholar 

  34. E. Groppo, C. Lamberti, F. Cesano, A. Zecchina, PCCP 8, 2453 (2006)

    CAS  PubMed  Google Scholar 

  35. H. Zangeneh, A.A.L. Zinatizadeh, M. Habibi, M.A. Akia, J. Ind. Eng. Chem. 26, 1 (2015)

    CAS  Google Scholar 

  36. M.J. Uddin, D.E. Daramola, E. Velasquez, T.J. Dickens, J. Yan, Phys. Status Solidi RRL 8, 898 (2014)

    CAS  Google Scholar 

  37. Y. Wang, S. Lkhamjav, B. Qiu, C. Dong, C. Dong, Y. Zhou, B. Shen, M. Xing, J. Zhang, Res. Chem. Intermed. 43, 2055 (2017)

    CAS  Google Scholar 

  38. M. Takeuchi, M. Matsuoka, M. Anpo, Res. Chem. Intermed. 38, 1261 (2012)

    CAS  Google Scholar 

  39. N. Sakaguchi Miyamoto, R. Miyamoto, E. Giamello, T. Kurisaki, H. Wakita, Res. Chem. Intermed. 44, 4563 (2018)

    CAS  Google Scholar 

  40. S.M. Chaudhari, P.M. Gawal, P.K. Sane, S.M. Sontakke, P.R. Nemade, Res. Chem. Intermed. 44, 3115 (2018)

    CAS  Google Scholar 

  41. J. Liu, L. Zhang, X. Yao, S.S.C. Chuang, Res. Chem. Intermed. 43, 5041 (2017)

    CAS  Google Scholar 

  42. S. Cravanzola, F. Cesano, F. Gaziano, D. Scarano, Catalysts 7, 214 (2017)

    Google Scholar 

  43. B.P. Dhamaniya, A. Kumar, A.K. Srivastava, J.S. Tawale, Res. Chem. Intermed. 43, 387 (2017)

    CAS  Google Scholar 

  44. Z. Youssef, L. Colombeau, N. Yesmurzayeva, F. Baros, R. Vanderesse, T. Hamieh, J. Toufaily, C. Frochot and T. Roques-Carmes 159, 49 (2018)

    CAS  Google Scholar 

  45. I.M. Kobasa, I.V. Kondratyeva, L.I. Odosiy, Y.V. Kropelnytska, Res. Chem. Intermed. 45, 1 (2019)

    Google Scholar 

  46. A. Hagfeldt, M. Grätzel, Acc. Chem. Res. 33, 269 (2000)

    CAS  PubMed  Google Scholar 

  47. I. Robel, V. Subramanian, M. Kuno, P.V. Kamat, J. Am. Chem. Soc. 128, 2385 (2006)

    CAS  PubMed  Google Scholar 

  48. C. Sun, P. He, G. Pan, Y. Miao, T. Zhang, L. Zhang, Res. Chem. Intermed. 44, 2607 (2018)

    CAS  Google Scholar 

  49. B. Soman, S. Challagulla, S. Payra, S. Dinda, S. Roy, Res. Chem. Intermed. 44, 2261 (2018)

    CAS  Google Scholar 

  50. S. Bao, J. Wan, B. Tian, J. Zhang, Res. Chem. Intermed. 44, 6137 (2018)

    CAS  Google Scholar 

  51. C.Z. Wen, J.Z. Zhou, H.B. Jiang, Q.H. Hu, S.Z. Qiao, H.G. Yang, Chem. Commun. 47, 4400 (2011)

    CAS  Google Scholar 

  52. J. Yu, J. Lei, L. Wang, C. Guillard, J. Zhang, Y. Liu, M. Anpo, Res. Chem. Intermed. 45, 1 (2019)

    Google Scholar 

  53. Y. Chen, Q. Dong, L. Wang, X. Guo, S. Ai, H. Ding, Res. Chem. Intermed. 44, 7369 (2018)

    CAS  Google Scholar 

  54. W. Zhang, Y. Zhou, C. Dong, B. Shen, M. Xing, J. Zhang, Res. Chem. Intermed. 44, 4797 (2018)

    CAS  Google Scholar 

  55. P. Verma, S.K. Samanta, Res. Chem. Intermed. 44, 1963 (2018)

    CAS  Google Scholar 

  56. J.C. Colmenares, R.S. Varma, P. Lisowski, Green Chem. 18, 5736 (2016)

    CAS  Google Scholar 

  57. B. Tang, H. Chen, H. Peng, Z. Wang, W. Huang, Nanomaterials 8, 105 (2018)

    PubMed Central  Google Scholar 

  58. K.R. Reddy, M. Hassan, V.G. Gomes, Appl. Catal. A General 489, 1 (2015)

    CAS  Google Scholar 

  59. K. Lee, H. Yoon, C. Ahn, J. Park, S. Jeon, Nanoscale 11, 7025 (2019)

    CAS  PubMed  Google Scholar 

  60. M. Baca, W. Kukuka, K. Cendrowski, E. Mijowska, R.J. Kaleczuk, B. Zieliska, ChemSusChem 12, 612 (2019)

    CAS  PubMed  Google Scholar 

  61. S. Cravanzola, S.M. Jain, F. Cesano, A. Damin, D. Scarano, RSC Adv. 5, 103255 (2015)

    CAS  Google Scholar 

  62. J. Shi, Chem. Rev. 113, 2139 (2013)

    CAS  Google Scholar 

  63. L.A. King, W. Zhao, M. Chhowalla, D.J. Riley, G. Eda, J. Mater. Chem. 1, 8935 (2013)

    CAS  Google Scholar 

  64. W.K. Ho, J.C. Yu, J. Lin, J.G. Yu, P.S. Li, Langmuir 20, 5865 (2004)

    CAS  PubMed  Google Scholar 

  65. T. Umeyama, H. Imahori, Dalton Trans. 46, 15615 (2017)

    CAS  PubMed  Google Scholar 

  66. E. Singh, H.S. Nalwa, Sci. Adv. Mater. 7, 1863 (2015)

    CAS  Google Scholar 

  67. V. Etacheri, C. Di Valentin, J. Schneider, D. Bahnemann, S.C. Pillai, J. Photochem. Photob. C Photochem. Rev. 25, 1 (2015)

    CAS  Google Scholar 

  68. I.A. Rusetskyi, M.O. Danilov, S.S. Fomanyuk, I.A. Slobodyanyuk, V.S. Vorobets, G.Y. Kolbasov, Res. Chem. Intermed. (2019). https://doi.org/10.1007/s11164-019-03895-0

    CAS  Google Scholar 

  69. W. Iqbal, B. Tian, M. Anpo, J. Zhang, Res. Chem. Intermed. 43, 5187 (2017)

    CAS  Google Scholar 

  70. H.Y. He, J.H. Lin, W. Fu, X.L. Wang, H. Wang, Q.S. Zeng, Q. Gu, Y.M. Li, C. Yan, B.K. Tay, C. Xue, X. Hu, S.T. Pantelides, W. Zhou, Z. Liu, Adv. Energy Mater. 6, 1600464 (2016)

    Google Scholar 

  71. W.J. Han, C. Zang, Z.Y. Huang, H. Zhang, L. Ren, X. Qi, J.X. Zhong, Int. J. Hydrogen Energy 39, 19502 (2014)

    CAS  Google Scholar 

  72. B.A. Chen, E.Z. Liu, F. He, C.S. Shi, C.N. He, J.J. Li, N.Q. Zhao, Nano Energy 26, 541 (2016)

    CAS  Google Scholar 

  73. B.A. Chen, E.Z. Liu, T.T. Cao, F. He, C.S. Shi, C.N. He, L.Y. Ma, Q.Y. Li, J.J. Li, N.Q. Zhao, Nano Energy 33, 247 (2017)

    CAS  Google Scholar 

  74. S. Cravanzola, F. Cesano, F. Gaziano, D. Scarano, Front. Chem. 5, 91 (2017)

    PubMed  PubMed Central  Google Scholar 

  75. L. Guo, Z. Yang, K. Marcus, Z. Li, B. Luo, L. Zhou, X. Wang, Y. Du, Y. Yang, En. Environm. Sci. 11, 106 (2018)

    CAS  Google Scholar 

  76. K.H. Hu, X.G. Hu, Y.F. Xu, X.Z. Pan, React. Kinet. Mech. Catal. 100, 153 (2010)

    CAS  Google Scholar 

  77. Z. Yin, H. Li, H. Li, L. Jiang, Y. Shi, Y. Sun, G. Lu, Q. Zhang, X. Chen, H. Zhang, ACS Nano 6, 74 (2012)

    CAS  PubMed  Google Scholar 

  78. F. Cesano, D. Scarano, Coatings 8, 419 (2018)

    Google Scholar 

  79. Y. Lin, P. Ren, C. Wei, CrystEngComm 21, 3439 (2019)

    CAS  Google Scholar 

  80. Y. Li, C. Cai, B. Sun, J. Chen, Semicond. Sci. Technol. 32, 105011 (2017)

    Google Scholar 

  81. L. Zheng, S. Han, H. Liu, P. Yu, X. Fang, Small 12, 1527 (2016)

    CAS  PubMed  Google Scholar 

  82. Y.J. Yuan, Z.J. Ye, H.W. Lu, B. Hu, Y.H. Li, D.Q. Chen, J.S. Zhong, Z.T. Yu, Z.G. Zou, ACS Catal. 6, 532 (2016)

    CAS  Google Scholar 

  83. S. Wang, B.Y. Guan, L. Yu, X.W.D. Lou, Adv. Mater. 29, 1703614 (2017)

    Google Scholar 

  84. W. Gao, M. Wang, C. Ran, L. Li, Chem. Commun. 51, 1709 (2015)

    CAS  Google Scholar 

  85. S. Cravanzola, L. Muscuso, F. Cesano, G. Agostini, A. Damin, D. Scarano, A. Zecchina, Langmuir 31, 5469 (2015)

    CAS  PubMed  Google Scholar 

  86. R.D. Brown, R.A. Burton, P.M. Ku, ASLE Trans. 6, 12 (1963)

    Google Scholar 

  87. T. Chinone, S. Okazaki, Nippon Kagaku Kaishi 10, 1327 (1978)

    Google Scholar 

  88. Y. Nosaka, H. Sasaki, K. Norimatsu, H. Miyama, Chem. Phys. Lett. 105, 456 (1984)

    CAS  Google Scholar 

  89. Y. Okamoto, A. Maezawa, T. Imanaka, J. Catal. 120, 29 (1989)

    CAS  Google Scholar 

  90. J. Ramirez, S. Fuentes, G. Díaz, M. Vrinat, M. Breysse, M. Lacroix, Appl. Catal. 52, 211 (1989)

    CAS  Google Scholar 

  91. K.C. Pratt, J.V. Sanders, V. Christov, J. Catal. 124, 416 (1990)

    CAS  Google Scholar 

  92. Y. He, A. Tilocca, O. Dulub, A. Selloni, U. Diebold, Nat. Mater. 8, 585 (2009)

    CAS  PubMed  Google Scholar 

  93. G.S. Herman, Z. Dohnálek, N. Ruzycki, U. Diebold, J. Phys. Chem. B 107, 2788 (2003)

    CAS  Google Scholar 

  94. M. Setvin, B. Daniel, U. Aschauer, W. Hou, Y.-F. Li, M. Schmid, A. Selloni, U. Diebold, Phys. Chem. Chem. Phys. 16, 21524 (2014)

    CAS  PubMed  Google Scholar 

  95. M. Primet, P. Pichat, M.V. Mathieu, J. Phys. Chem. 75, 1216 (1971)

    CAS  Google Scholar 

  96. A.A. Tsyganenko, V.N. Filimonov, J. Mol. Struct. 19, 579 (1973)

    CAS  Google Scholar 

  97. C. Morterra, A. Chiorino, F. Boccuzzi, E.Z. Fisicaro, Phys. Chem. Neue Folge 124, 211 (1982)

    Google Scholar 

  98. G. Busca, H. Saussey, O. Saur, J.C. Lavalley, V. Lorenzelli, Appl. Catal. 14, 245 (1985)

    CAS  Google Scholar 

  99. K. Hadjiivanov, A. Davydov, D. Klissurski, Kinet. Katal. 29, 161 (1988)

    Google Scholar 

  100. C. Morterra, J. Chem. Soc. Faraday Trans. 84, 1617 (1988)

    CAS  Google Scholar 

  101. K.I. Hadjiivanov, D.G. Klissurski, Chem. Soc. Rev. 25, 61 (1996)

    CAS  Google Scholar 

  102. S.H. Szczepankiewicz, A.J. Colussi, M.R. Hoffmann, J. Phys. Chem. B 104, 9842 (2000)

    CAS  Google Scholar 

  103. B. Erdem, R.A. Hunsicker, G.W. Simmons, E. David Sudol, V.L. Dimonie, M.S. El-Aasser, Langmuir 17, 2664 (2001)

    CAS  Google Scholar 

  104. K.S. Finnie, D.J. Cassidy, J.R. Bartlett, J.L. Woolfrey, Langmuir 17, 816 (2001)

    CAS  Google Scholar 

  105. P. Du, A. Bueno-López, M. Verbaas, A.R. Almeida, M. Makkee, J.A. Moulijn, G. Mul, J. Catal. 260, 75 (2008)

    CAS  Google Scholar 

  106. G. Martra, Appl. Cat. A Gen. 200, 275 (2000)

    CAS  Google Scholar 

  107. X.Q. Gong, A. Selloni, M. Batzill, U. Diebold, Nat. Mater. 5, 665 (2006)

    CAS  PubMed  Google Scholar 

  108. L. Mino, G. Spoto, S. Bordiga, A. Zecchina, J. Phys. Chem. C 116, 17008 (2012)

    CAS  Google Scholar 

  109. C. Deiana, E. Fois, S. Coluccia, G. Martra, J. Phys. Chem. C 114, 21531 (2010)

    CAS  Google Scholar 

  110. C. Arrouvel, M. Digne, M. Breysse, H. Toulhoat, P. Raybaud, J. Catal. 222, 152 (2004)

    CAS  Google Scholar 

  111. http://www.metecnetwork.eu/setnanometro-project/.

  112. L. Mino, F. Pellegrino, S. Rades, J. Radnik, V.D. Hodoroaba, G. Spoto, V. Maurino, G. Martra, A.C.S. Appl, Nano Mater. 1, 5355 (2018)

    CAS  Google Scholar 

  113. M. Takeuchi, L. Bertinetti, G. Martra, S. Coluccia, M. Anpo, Appl. Catal. A. Gen. 307, 13 (2006)

    CAS  Google Scholar 

  114. M. Takeuchi, K. Sakamoto, G. Martra, S. Coluccia, M. Anpo, J. Phys. Chem. B 109, 15422 (2005)

    CAS  PubMed  Google Scholar 

  115. L. Mino, G. Spoto, A.M. Ferrari, J. Phys. Chem. C 118, 25016 (2014)

    CAS  Google Scholar 

  116. Y.J. Cao, S.J. Hu, M. Yu, S.S. Yan, M.C. Xu, Phys. Chem. Chem. Phys. 17, 23994 (2015)

    CAS  PubMed  Google Scholar 

  117. I. Kamber, Res. Chem. Intermed. 23, 735 (1997)

    CAS  Google Scholar 

  118. A. Kubas, D. Berger, H. Oberhofer, D. Maganas, K. Reuter, F. Neese, J. Phys. Chem. Lett. 7, 4207 (2016)

    CAS  PubMed  Google Scholar 

  119. Y.J. Cao, M. Yu, S.D. Qi, T.T. Wang, S.M. Huang, Z.F. Ren, S.S. Yan, S.J. Hu, M.C. Xu, Phys. Chem. Chem. Phys. 19, 31267 (2017)

    CAS  PubMed  Google Scholar 

  120. L.F. Liao, C.F. Lien, D.L. Shieh, M.T. Chen, J.L. Lin, J. Phys. Chem. B 106, 11240 (2002)

    CAS  Google Scholar 

  121. J. Baltrusaitis, J. Schuttlefield, E. Zeitler, V.H. Grassian, Chem. Eng. J. 170, 471 (2011)

    CAS  Google Scholar 

  122. L. Mino, G. Spoto, S. Bordiga, A. Zecchina, J. Phys. Chem. C 117, 11186 (2013)

    CAS  Google Scholar 

  123. F. Pellegrino, F. Sordello, L. Mino, C. Minero, V.D. Hodoroaba, G. Martra, V. Maurino, ACS Catal. 9, 6692 (2019)

    CAS  Google Scholar 

  124. Z. Xiong, Z. Lei, Y.Z. Li, L.C. Dong, Y.C. Zhao, J.Y. Zhang, J. Photochem. Photobiol. C-Photochem. Rev. 36, 24 (2018)

    CAS  Google Scholar 

  125. L.J. Liu, H.L. Zhao, J.M. Andino, Y. Li, ACS Catal. 2, 1817 (2012)

    CAS  Google Scholar 

  126. L.J. Liu, F. Gao, H.L. Zhao, Y. Li, Appl. Catal. B-Environ. 134, 349 (2013)

    Google Scholar 

  127. Y. Wang, J. Zhao, T.F. Wang, Y.X. Li, X.Y. Li, J. Yin, C.Y. Wang, J. Catal. 337, 293 (2016)

    CAS  Google Scholar 

  128. L.J. Liu, C.Y. Zhao, J.T. Miller, Y. Li, J. Phys. Chem. C 121, 490 (2017)

    CAS  Google Scholar 

  129. M. Anpo, S.C. Moon, K. Chiba, G. Martra, S. Coluccia, Res. Chem. Intermed. 19, 495 (1993)

    CAS  Google Scholar 

  130. A. Zecchina, D. Scarano, S. Bordiga, G. Spoto, C. Lamberti, Surface structures of oxides and halides and their relationships to catalytic properties (Academic Press Inc, Cambridge, 2001)

    Google Scholar 

  131. J.C. Védrine, Res. Chem. Intermed. 41, 9387 (2015)

    Google Scholar 

  132. A.V. Ivanov, A.E. Koklin, E.B. Uvarova, L.M. Kustov, PCCP 5, 4718 (2003)

    CAS  Google Scholar 

  133. K.G. Pierce, M.A. Barteau, J. Phys. Chem. 98, 3882 (1994)

    CAS  Google Scholar 

  134. A.B. Sherrill, M.A. Barteau, J. Mol. Catal. A Chem. 184, 301 (2002)

    CAS  Google Scholar 

  135. A.H. Boonstra, C.A.H.A. Mutsaers, J. Phys. Chem. 79, 2025 (1975)

    CAS  Google Scholar 

  136. V. Rives-Arnau, N. Sheppard, JCS Faraday 76, 394 (1980)

    CAS  Google Scholar 

  137. V. Rives-Arnau, N. Sheppard, Soc. Faraday Trans. 77, 953 (1981)

    CAS  Google Scholar 

  138. S.M. Jain, J.J. Biedrzycki, V. Maurino, A. Zecchina, L. Mino, G. Spoto, J. Mater. Chem. A 2, 12247 (2014)

    CAS  Google Scholar 

  139. J.J. Biedrzycki, S. Livraghi, I. Corazzari, L. Mino, G. Spoto, E. Giamello, Langmuir 31, 569 (2015)

    CAS  PubMed  Google Scholar 

  140. H.Y.T. Chen, S. Livraghi, E. Giamello, G. Pacchioni, ChemPlusChem 81, 64 (2016)

    CAS  Google Scholar 

  141. H. Liu, Z. Chen, L. Zhang, D. Zhu, Q. Zhang, Y. Luo, X. Shao, PLoS ONE 122, 6388 (2018)

    CAS  Google Scholar 

  142. H. Liu, D. Zhu, H. Shi, X. Shao, ACS Omega 1, 168 (2016)

    CAS  PubMed  PubMed Central  Google Scholar 

  143. S. Cravanzola, M. Sarro, F. Cesano, P. Calza, D. Scarano, Nanomaterials 8(207), 201 (2018)

    Google Scholar 

  144. J. Jun Zhang, L. Zhang, X. Ma, Z. Ji, Appl. Surf. Sci. 430, 424 (2018)

    Google Scholar 

  145. X. Zhu, C. Yang, F. Xiao, J. Wang, X. Su, New J. Chem. 39, 683 (2015)

    CAS  Google Scholar 

  146. D. Scarano, F. Cesano, A. Zecchina, J. Phys. Chem. C 123, 7799 (2019)

    CAS  Google Scholar 

  147. W.D. Schneider, M. Heyde, H.J. Freund, Chem. Eur. J. 24, 2317 (2018)

    CAS  PubMed  Google Scholar 

  148. H. Wang, D. Kong, P. Johanes, J.J. Cha, G. Zheng, K. Yan, N. Liu, Y. Cui, Nano Lett. 13, 3426 (2013)

    CAS  PubMed  Google Scholar 

  149. F. Cesano, S. Bertarione, A. Piovano, M.M. Rahman, G. Agostini, E. Groppo, F. Bonino, C. Lamberti, D. Scarano, S. Bordiga, L. Montanari, L. Bonoldi, R. Millini, A. Zecchina, Catal. Sci. Technol. 1, 123 (2011)

    CAS  Google Scholar 

  150. H. Liu, Y. Li, M. Xiang, H. Zeng, X. Shao, ACS Nano 13, 6083 (2019)

    CAS  PubMed  Google Scholar 

  151. S. Cravanzola, F. Cesano, G. Magnacca, A. Zecchina, D. Scarano, RSC Adv. 6, 59001 (2016)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gianmario Martra.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mino, L., Cesano, F., Scarano, D. et al. Molecules and heterostructures at TiO2 surface: the cases of H2O, CO2, and organic and inorganic sensitizers. Res Chem Intermed 45, 5801–5829 (2019). https://doi.org/10.1007/s11164-019-04003-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-019-04003-y

Keywords

Navigation