Skip to main content
Log in

Neutral Property Taxation Under Uncertainty

  • Published:
The Journal of Real Estate Finance and Economics Aims and scope Submit manuscript

Abstract

In a framework where no uncertainty arises, Arnott (J Publ Econ Theor 7:27–50, 2005) investigates a neutral property taxation policy that will not affect a landowner’s choices of capital intensity and timing of development. We investigate the same issue, but allow rents on structures to be stochastic over time. We assume that a regulator implements taxation on capital, vacant land, and post-development property so as to expropriate a certain ratio of pre-tax site value as well as to achieve neutrality. We find that the optimal taxation policy is to tax capital and subsidize properties before and after development. We also investigate how this optimal policy changes in response to changes in several exogenous forces related to demand and supply conditions of the real estate market.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. See also Arnott and Petrova (2006), which extends Arnott’s article to investigate the issue of deadweight loss.

  2. Our article investigates taxation on gross property value after development. This contrasts with Arnott (2005), who investigates taxation on the residual site value, which is defined as net property value after development, i.e., property value less structure value, with structure value measured as construction costs. During the 1970s, four papers including Shoup (1970), Skouras (1978), Bentick (1979), and Mills (1981) examined the most intuitive decomposition of the residual site value.

  3. We ignore the disposition of tax revenue, and thus the possibility that public provision may either raise rents by spending on amenities or reduce development costs by spending on infrastructure (Barro 1990).

  4. We also assume that all lots are developed simultaneously and finished instantly. These assumptions are usually adopted in the real options literature (see, e.g., Capozza and Li 1994; Childs et al. 1996; Jou and Lee 2007, 2008; Lee and Jou 2007; Williams 1991). Thus, we do not allow lots to be developed sequentially, nor do we allow for development of real estate to take the form of a sequential investment (see, e.g., Bar-Ilan and Strange 1998).

  5. τ b is required to be larger than (α − ρ) to ensure that β 1t  > 1 and β 2t  < 0.

  6. For x* and k* to be interior solutions of the maximization problem, the following second-order conditions must be satisfied: \({{\partial M} \mathord{\left/ {\vphantom {{\partial M} {\partial x <0}}} \right. \kern-\nulldelimiterspace} {\partial x <0}}\), \({{\partial S} \mathord{\left/ {\vphantom {{\partial S} {\partial k <0}}} \right. \kern-\nulldelimiterspace} {\partial k <0}}\), and \({{\partial M} \mathord{\left/ {\vphantom {{\partial M} {\partial x \cdot {{\partial S} \mathord{\left/ {\vphantom {{\partial S} {\partial k >{{\partial M} \mathord{\left/ {\vphantom {{\partial M} {\partial k \cdot {{\partial S} \mathord{\left/ {\vphantom {{\partial S} {\partial x}}} \right. \kern-\nulldelimiterspace} {\partial x}}}}} \right. \kern-\nulldelimiterspace} {\partial k \cdot {{\partial S} \mathord{\left/ {\vphantom {{\partial S} {\partial x}}} \right. \kern-\nulldelimiterspace} {\partial x}}}}}}} \right. \kern-\nulldelimiterspace} {\partial k >{{\partial M} \mathord{\left/ {\vphantom {{\partial M} {\partial k \cdot {{\partial S} \mathord{\left/ {\vphantom {{\partial S} {\partial x}}} \right. \kern-\nulldelimiterspace} {\partial x}}}}} \right. \kern-\nulldelimiterspace} {\partial k \cdot {{\partial S} \mathord{\left/ {\vphantom {{\partial S} {\partial x}}} \right. \kern-\nulldelimiterspace} {\partial x}}}}}}}}} \right. \kern-\nulldelimiterspace} {\partial x \cdot {{\partial S} \mathord{\left/ {\vphantom {{\partial S} {\partial k >{{\partial M} \mathord{\left/ {\vphantom {{\partial M} {\partial k \cdot {{\partial S} \mathord{\left/ {\vphantom {{\partial S} {\partial x}}} \right. \kern-\nulldelimiterspace} {\partial x}}}}} \right. \kern-\nulldelimiterspace} {\partial k \cdot {{\partial S} \mathord{\left/ {\vphantom {{\partial S} {\partial x}}} \right. \kern-\nulldelimiterspace} {\partial x}}}}}}} \right. \kern-\nulldelimiterspace} {\partial k >{{\partial M} \mathord{\left/ {\vphantom {{\partial M} {\partial k \cdot {{\partial S} \mathord{\left/ {\vphantom {{\partial S} {\partial x}}} \right. \kern-\nulldelimiterspace} {\partial x}}}}} \right. \kern-\nulldelimiterspace} {\partial k \cdot {{\partial S} \mathord{\left/ {\vphantom {{\partial S} {\partial x}}} \right. \kern-\nulldelimiterspace} {\partial x}}}}}}}}\). We therefore need to impose the following constraint: \(k^* >\left[ {{{f\gamma } \mathord{\left/ {\vphantom {{f\gamma } {\left( {1 - \gamma } \right)}}} \right. \kern-\nulldelimiterspace} {\left( {1 - \gamma } \right)}}} \right]^{{1 \mathord{\left/ {\vphantom {1 {\left( {1 - \gamma } \right)}}} \right. \kern-\nulldelimiterspace} {\left( {1 - \gamma } \right)}}} \).

  7. Capozza and Li (1994) employ a model similar to ours except that they assume x(s) follows an arithmetic Brownian rather than a geometric Brownian motion. Therefore, their comparative static results cannot be directly compared with those of ours.

  8. For x 0 and k 0 to be interior solutions of the maximization problem, we need to impose the constraint \(k_0 >\left[ {{{f\gamma } \mathord{\left/ {\vphantom {{f\gamma } {\left( {1 - \gamma } \right)}}} \right. \kern-\nulldelimiterspace} {\left( {1 - \gamma } \right)}}} \right]^{{1 \mathord{\left/ {\vphantom {1 {\left( {1 - \gamma } \right)}}} \right. \kern-\nulldelimiterspace} {\left( {1 - \gamma } \right)}}} \).

  9. We also assume that β10 is larger than 1/(1 − γ) to ensure that k 0 and x 0 in Eqs. 25 and 26, respectively, are both positive.

  10. Note that we also assume that a landowner incurs fixed construction costs, while Arnott abstracts from these costs.

  11. In a non-stochastic framework, Anderson (1999) also reaches a similar conclusion. He shows that a shift to a two-rate tax system (a decrease in τ b and an increase in τ k ) will speed the development process and increase the capital intensity if capital and time are substitutes in the land-profit function (which applies to a declining urban area). The results become ambiguous if capital and time are complements (which apply to a growing urban area).

  12. The effective rate of property tax for the residential property in the USA ranges from 0.4% to 2.9% (Bird and Slack 2004). We divide this tax rate by the discount rate (ρ = 10%), and thus derive an expropriation rate of between 4% and 29%. Our benchmark parameter value for the expropriation rate, 25%, is within this range.

  13. From Cox and Miller (1970), the expected hitting time for the stochastic rent from to x* is given by \(E\left( {T^* - t} \right) = \frac{{\ln x^* - \ln x}}{{{{\alpha - \sigma ^2 } \mathord{\left/ {\vphantom {{\alpha - \sigma ^2 } 2}} \right. \kern-\nulldelimiterspace} 2}}} = \frac{{\ln x^* - \ln 0.97x^* }}{{{{0.02 - \left( {0.12} \right)^2 } \mathord{\left/ {\vphantom {{0.02 - \left( {0.12} \right)^2 } 2}} \right. \kern-\nulldelimiterspace} 2}}} = 2.38\;{\text{years}}{\text{.}}\)

References

Download references

Acknowledgements

We would like to thank the guest editors (Richard Buttimer and Kanak Patel), one anonymous reviewer, Richard Arnott, Edward Coulson, Steven Ott, Dean A. Paxson, Brenda A. Priebe, and participants at the 2007 Cambridge-UNCC Symposium, the 2007 Joint AsRES-AREUEA International Conference, and the National Taiwan University for their helpful comments on earlier versions of this manuscript. Jyh-Bang Jou acknowledges financial support from the Social Policy Research Center, College of Social Sciences, National Taiwan University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tan Lee.

Appendices

Appendix 1

Differentiating k* and x* in Eqs. 23 and 24, respectively, with respect to τ k yields

$$\frac{{{\text{d}}k^* }}{{{\text{d}}\tau _k }} = \frac{{k^* }}{{\left( {c + \tau _k } \right)}} <0,$$
(34)
$$\frac{{dx^* }}{{d\tau _k }} = \frac{{\gamma x^* }}{{\left( {c + \tau _k } \right)}} >0.$$
(35)

Differentiating k* and x* with respect to τ b yields

$$\frac{{{\text{d}}k^* }}{{{\text{d}}\tau _b }} = \frac{{ - k^* }}{{\left( {1 - \frac{1}{{\beta _{1t} }} - \gamma } \right)\beta _{1t} ^2 }}\frac{{\partial \beta _{1t} }}{{\partial \tau _b }} <0,$$
(36)
$$\frac{{{\text{d}}x^* }}{{{\text{d}}\tau _b }} = \frac{{ - \left( {1 - \gamma } \right)x^* }}{{\left( {1 - \frac{1}{{\beta _{1t} }} - \gamma } \right)\beta _{1t} ^2 }}\frac{{\partial \beta _{1t} }}{{\partial \tau _b }} <0.$$
(37)

Differentiating k* and x* with respect to τ a yields

$$\frac{{{\text{d}}k^* }}{{{\text{d}}\tau _a }} = 0,$$
(38)
$$\frac{{dk^* }}{{d\tau _a }} = \frac{{x^* }}{{\tau _a }} >0.$$
(39)

QED.

Appendix 2

Define \(g\left( Z \right) = E_t \int_t^{T^* } {Z\left( {x\left( s \right)} \right)e^{ - \rho \left( {s - t} \right)} ds} \). Substituting A 1 in Eq. 19 and A 2 in Eq. 20 into Eq. 14 yields

$$Z\left( {x\left( s \right)} \right) = \frac{{k^{*\gamma } x^* }}{{\left( {\rho + \tau _a - \alpha } \right)\beta _{1t} }}\left( {\frac{{x\left( s \right)}}{{x^* }}} \right)^{\beta _{1t} } .$$
(40)

Given that x(s) evolves according to the geometric Brownian motion given by Eq. 1, Z(s) evolves according to a geometric Brownian motion given by

$$\frac{{{\text{d}}Z\left( s \right)}}{{Z\left( s \right)}} = \left[ {\alpha \beta _{1t} + \frac{{\sigma ^2 }}{2}\beta _{1t} \left( {\beta _{1t} - 1} \right)} \right]{\text{d}}t + \sigma \beta _{1t} d\Omega \left( s \right).$$
(41)

Thus, g(Z) will satisfy the differential equation

$$\frac{1}{2}\sigma ^2 \beta _{1t} ^2 g\prime \left( Z \right) + \left[ {\alpha \beta _{1t} + \frac{{\sigma ^2 }}{2}\beta _{1t} \left( {\beta _{1t} - 1} \right)} \right]Zg\prime \left( Z \right) - \rho g\left( Z \right) + Z = 0.$$
(42)

This has the general solution

$$g\left( Z \right) = B_1 Z^{\theta _1 } + B_2 Z^{\theta _2 } + \frac{Z}{{\rho - \alpha \beta _{1t} - \frac{{\sigma ^2 }}{2}\beta _{1t} \left( {\beta _{1t} - 1} \right)}},$$
(43)

where θ 1 and θ 2 are, respectively, the larger and smaller roots of the quadratic equation

$$ - \frac{1}{2}\sigma ^2 \beta _{1t} ^2 \theta \left( {\theta - 1} \right) - \left[ {\alpha \beta _{1t} + \frac{{\sigma ^2 }}{2}\beta _{1t} \left( {\beta _{1t} - 1} \right)} \right]\theta + \rho = 0.$$
(44)

The boundary conditions are given by

$$g\left( 0 \right) = 0\;{\text{and}}\;g\left( {Z\left( {x^* } \right)} \right) = 0.$$
(45)

Therefore,

$$B_2 = 0\;{\text{and}}\;B_1 = \frac{{ - Z\left( {x^* } \right)^{1 - \theta _1 } }}{{\rho - \alpha \beta _{1t} - \frac{{\sigma ^2 }}{2}\beta _{1t} \left( {\beta _{1t} - 1} \right)}}.$$
(46)

After detailed calculations, this yields

$$g\left( {Z\left( x \right)} \right) = \frac{{f\left( {\frac{x}{{x^* }}} \right)^{\beta _{1t} } \left[ {1 - \left( {\frac{x}{{x^* }}} \right)^{\beta _{1t} \left( {\theta _1 - 1} \right)} } \right]}}{{ - \tau _b \left[ {\left( {1 - \gamma } \right)\beta _{1t} - 1} \right]}}.$$
(47)

Furthermore,

$$\begin{aligned} & \quad E_{t} {\int_{T^{*} }^\infty {{\left[ {W_{a} {\left( {x{\left( s \right)},k} \right)} - {\left( {c + \tau _{k} } \right)}k - f} \right]}e^{{ - \rho {\left( {s - t} \right)}}} } }{\text{d}}s \\ & = E_{t} e^{{ - \rho {\left( {T^{*} - t} \right)}}} {\int_{T^{*} }^\infty {{\left[ {\frac{{x{\left( s \right)}k^{\gamma } }}{{{\left( {\rho + \tau _{a} - \alpha } \right)}}} - {\left( {1 + \tau _{k} } \right)}ck - f} \right]}e^{{ - \rho {\left( {s - T^{*} } \right)}}} {\text{d}}s,} } \\ \end{aligned} $$
(48)

where

$$\begin{aligned} & \quad \quad {\int_{T^{*} }^\infty {{\left[ {\frac{{x{\left( s \right)}k^{\gamma } }}{{{\left( {\rho + \tau _{a} - \alpha } \right)}}} - {\left( {1 + \tau _{k} } \right)}ck - f} \right]}e^{{ - \rho {\left( {s - T^{*} } \right)}}} {\text{d}}s} } \\ & \quad \quad = \frac{{x^{*} k^{{*\gamma }} }}{{{\left( {\rho + \tau _{a} - \alpha } \right)}{\left( {\rho - \alpha } \right)}}} - \frac{{{\left( {1 + \tau _{k} } \right)}ck^{*} }}{\rho } - \frac{f}{\rho } \\ & \quad \quad = \frac{f}{{{\left( {1 - \frac{1}{{\beta _{{1t}} }} - \gamma } \right)}}}{\left( {\frac{1}{{\rho - \alpha }} - \frac{\gamma }{\rho }} \right)} - \frac{f}{\rho } \\ & {\text{and}}\;E_{t} e^{{ - \rho {\left( {T^{*} - t} \right)}}} = {\left( {\frac{x}{{x^{*} }}} \right)}^{{\beta _{{10}} }} . \\ \end{aligned} $$
(49)

Finally, the pre-tax site value at development, discounted back to the current time t is given by

$$\begin{aligned} V = E_t e^{ - \rho \left( {T^* - t} \right)} \left[ {\frac{{x^* k^{*\gamma } }}{{\left( {\rho - \alpha } \right)}} - \left( {ck^* + f} \right)} \right] \\ \quad = \left( {\frac{x}{{x^* }}} \right)^{\beta _{10} } {\kern 1pt} \frac{f}{{\beta _{10} \left( {1 - \gamma } \right) - 1}}. \\ \end{aligned} $$
(50)

QED.

Appendix 3

Differentiating k* and k 0 with respect to σ yields

$$\frac{{\partial k^ * }}{{\partial \sigma }} = \frac{{2\left( {\beta _{1t} - 1} \right)k^ * }}{{\sigma \left[ {\left( {1 - \gamma } \right)\beta _{1t} - 1} \right]\left( {2\beta _{1t} - 1} \right)}} >0,$$
(51)
$$\frac{{\partial k_0 }}{{\partial \sigma }} = \frac{{2\left( {\beta _{10} - 1} \right)k_0 }}{{\sigma \left[ {\left( {1 - \gamma } \right)\beta _{10} - 1} \right]\left( {2\beta _{10} - 1} \right)}} >0.$$
(52)

Differentiating x* and x 0 with respect to σ yields

$$\frac{{\partial x^ * }}{{\partial \sigma }} = \frac{{2\left( {1 - \gamma } \right)\left( {\beta _{1t} - 1} \right)k^ * }}{{\sigma \left[ {\left( {1 - \gamma } \right)\beta _{1t} - 1} \right]\left( {2\beta _{1t} - 1} \right)}} >0,$$
(53)
$$\frac{{\partial x_0 }}{{\partial \sigma }} = \frac{{2\left( {1 - \gamma } \right)\left( {\beta _{10} - 1} \right)k_0 }}{{\sigma \left[ {\left( {1 - \gamma } \right)\beta _{10} - 1} \right]\left( {2\beta _{10} - 1} \right)}} >0.$$
(54)

Differentiating k* and k 0 with respect to α yields

$$\frac{{\partial k^ * }}{{\partial \alpha }} = \frac{{2k^ * }}{{\sigma \left[ {\left( {1 - \gamma } \right)\beta _{1t} - 1} \right]\left( {2\beta _{1t} - 1} \right)}} >0,$$
(55)
$$\frac{{\partial k_0 }}{{\partial \sigma }} = \frac{{2k_0 }}{{\sigma \left[ {\left( {1 - \gamma } \right)\beta _{10} - 1} \right]\left( {2\beta _{10} - 1} \right)}} >0.$$
(56)

Differentiating x* and x 0 with respect to α yields

$$\frac{{\partial x^ * }}{{\partial \alpha }} = \frac{{ - x^ * }}{{\left( {\rho + \tau _a - \alpha } \right)}} + \frac{{2\left( {1 - \gamma } \right)x^ * }}{{\sigma \left[ {\left( {1 - \gamma } \right)\beta _{1t} - 1} \right]\left( {2\beta _{1t} - 1} \right)}}\frac{ >}{ <}0,$$
(57)
$$\frac{{\partial x_0 }}{{\partial \alpha }} = \frac{{ - x_0 }}{{\left( {\rho - \alpha } \right)}} + \frac{{2\left( {1 - \gamma } \right)x_0 }}{{\sigma \left[ {\left( {1 - \gamma } \right)\beta _{10} - 1} \right]\left( {2\beta _{10} - 1} \right)}}\frac{ >}{ <}0.$$
(58)

Differentiating k* and x 0 with respect to γ yields

$$\frac{{\partial k^ * }}{{\partial \gamma }} = \frac{{k^ * }}{\gamma } + \frac{{k^ * }}{{1 - \frac{1}{{\beta _{1t} }} - \gamma }} >0,$$
(59)
$$\frac{{\partial k_0 }}{{\partial \gamma }} = \frac{{k_0 }}{\gamma } + \frac{{k_0 }}{{1 - \frac{1}{{\beta _{10} }} - \gamma }} >0.$$
(60)

Differentiating x* and x 0 with respect to γ yields

$$\frac{{\partial x^ * }}{{\partial \gamma }} = \left[ {\frac{{ - \left( {c + \tau _k } \right)}}{f} + \frac{{\left( {\gamma - 1} \right)}}{{\left( {1 - \frac{1}{{\beta _{1t} }} - \gamma } \right)}} - \ln \left( {1 - \frac{1}{{\beta _{1t} }} - \gamma } \right) + \frac{f}{{\left( {c + \tau _k } \right)}}\ln \frac{{f\gamma }}{{\left( {c + \tau _k } \right)}}} \right]x^ * \frac{ >}{ <}0,$$
(61)
$$\frac{{\partial x_0 }}{{\partial \gamma }} = \left[ {\frac{{ - c}}{f} + \frac{{\left( {\gamma - 1} \right)}}{{\left( {1 - \frac{1}{{\beta _{10} }} - \gamma } \right)}} - \ln \left( {1 - \frac{1}{{\beta _{10} }} - \gamma } \right) + \frac{f}{c}\ln \frac{{f\gamma }}{c}} \right]x_0 \frac{ >}{ <}0.$$
(62)

Differentiating k* and k 0 with respect to c yields

$$\frac{{\partial k^{ * } }}{{\partial c}} = \frac{{ - k^{ * } }}{c} < 0,$$
(63)
$$\frac{{\partial k_0 }}{{\partial c}} = \frac{{ - k_0 }}{c} <0.$$
(64)

Differentiating x* and x 0 with respect to c yields

$$\frac{{\partial x^{ * } }}{{\partial c}} = \frac{{\gamma x^{ * } }}{c} > 0,$$
(65)
$$\frac{{\partial x_0 }}{{\partial c}} = \frac{{\gamma x_0 }}{c} >0.$$
(66)

Differentiating k* and k 0 with respect to f yields

$$\frac{{\partial k^ * }}{{\partial f}} = \frac{{k^ * }}{f} >0,$$
(67)
$$\frac{{\partial k_0 }}{{\partial f}} = \frac{{k_0 }}{f} >0.$$
(68)

Differentiating x* and x 0 with respect to f yields

$$\frac{{\partial x^ * }}{{\partial f}} = \frac{{\left( {1 - \gamma } \right)x^ * }}{f} >0,$$
(69)
$$\frac{{\partial x_0 }}{{\partial f}} = \frac{{\left( {1 - \gamma } \right)x_0 }}{f} >0.$$
(70)

Given that k*=k 0, x*=x 0, and β 10 > β 1t , it then follows that \({{\partial k^* } \mathord{\left/ {\vphantom {{\partial k^* } {\partial \sigma >{{\partial k_0 } \mathord{\left/ {\vphantom {{\partial k_0 } {\partial \sigma }}} \right. \kern-\nulldelimiterspace} {\partial \sigma }}}}} \right. \kern-\nulldelimiterspace} {\partial \sigma >{{\partial k_0 } \mathord{\left/ {\vphantom {{\partial k_0 } {\partial \sigma }}} \right. \kern-\nulldelimiterspace} {\partial \sigma }}}}\), \({{\partial x^* } \mathord{\left/ {\vphantom {{\partial x^* } {\partial \sigma >{{\partial x_0 } \mathord{\left/ {\vphantom {{\partial x_0 } {\partial \sigma }}} \right. \kern-\nulldelimiterspace} {\partial \sigma }}}}} \right. \kern-\nulldelimiterspace} {\partial \sigma >{{\partial x_0 } \mathord{\left/ {\vphantom {{\partial x_0 } {\partial \sigma }}} \right. \kern-\nulldelimiterspace} {\partial \sigma }}}}\), \({{\partial k^* } \mathord{\left/ {\vphantom {{\partial k^* } {\partial \alpha >{{\partial k_0 } \mathord{\left/ {\vphantom {{\partial k_0 } {\partial \alpha }}} \right. \kern-\nulldelimiterspace} {\partial \alpha }}}}} \right. \kern-\nulldelimiterspace} {\partial \alpha >{{\partial k_0 } \mathord{\left/ {\vphantom {{\partial k_0 } {\partial \alpha }}} \right. \kern-\nulldelimiterspace} {\partial \alpha }}}}\), \({{\partial k^* } \mathord{\left/ {\vphantom {{\partial k^* } {\partial \gamma >{{\partial k_0 } \mathord{\left/ {\vphantom {{\partial k_0 } {\partial \gamma }}} \right. \kern-\nulldelimiterspace} {\partial \gamma }}}}} \right. \kern-\nulldelimiterspace} {\partial \gamma >{{\partial k_0 } \mathord{\left/ {\vphantom {{\partial k_0 } {\partial \gamma }}} \right. \kern-\nulldelimiterspace} {\partial \gamma }}}}\), \({{\partial x^* } \mathord{\left/ {\vphantom {{\partial x^* } {\partial \gamma >{{\partial x_0 } \mathord{\left/ {\vphantom {{\partial x_0 } {\partial \gamma }}} \right. \kern-\nulldelimiterspace} {\partial \gamma }}}}} \right. \kern-\nulldelimiterspace} {\partial \gamma >{{\partial x_0 } \mathord{\left/ {\vphantom {{\partial x_0 } {\partial \gamma }}} \right. \kern-\nulldelimiterspace} {\partial \gamma }}}}\), \({\partial k^{*} } \mathord{\left/ {\vphantom {{\partial k^{*} } {\partial c = {\partial k_{0} } \mathord{\left/ {\vphantom {{\partial k_{0} } {\partial c}}} \right. \kern-\nulldelimiterspace} {\partial c}}}} \right. \kern-\nulldelimiterspace} {\partial c = {\partial k_{0} } \mathord{\left/ {\vphantom {{\partial k_{0} } {\partial c}}} \right. \kern-\nulldelimiterspace} {\partial c}}\), \({\partial x^{*} } \mathord{\left/ {\vphantom {{\partial x^{*} } {\partial c = {\partial x_{0} } \mathord{\left/ {\vphantom {{\partial x_{0} } {\partial c}}} \right. \kern-\nulldelimiterspace} {\partial c}}}} \right. \kern-\nulldelimiterspace} {\partial c = {\partial x_{0} } \mathord{\left/ {\vphantom {{\partial x_{0} } {\partial c}}} \right. \kern-\nulldelimiterspace} {\partial c}}\), \({\partial k^{*} } \mathord{\left/ {\vphantom {{\partial k^{*} } {\partial f = {\partial k_{0} } \mathord{\left/ {\vphantom {{\partial k_{0} } {\partial f}}} \right. \kern-\nulldelimiterspace} {\partial f}}}} \right. \kern-\nulldelimiterspace} {\partial f = {\partial k_{0} } \mathord{\left/ {\vphantom {{\partial k_{0} } {\partial f}}} \right. \kern-\nulldelimiterspace} {\partial f}}\), and \({\partial x^{*} } \mathord{\left/ {\vphantom {{\partial x^{*} } {\partial f = {\partial x_{0} } \mathord{\left/ {\vphantom {{\partial x_{0} } {\partial f}}} \right. \kern-\nulldelimiterspace} {\partial f}}}} \right. \kern-\nulldelimiterspace} {\partial f = {\partial x_{0} } \mathord{\left/ {\vphantom {{\partial x_{0} } {\partial f}}} \right. \kern-\nulldelimiterspace} {\partial f}}\).

QED.

Appendix 4

Suppose that we explicitly write x* and k* as a function of τ a , τ b , τ k , and σ, that is, as x*(τ a , τ b , τ k , σ) and k*(τ a , τ b , τ k , σ), respectively, and x 0 and k 0 as a function of σ, that is, as x 0(σ) and k 0(σ), respectively. Suppose that at \(\sigma = \overline \sigma \), \(k^* \left( {\tau _a ,\tau _b ,\tau _k ,\overline \sigma } \right) = k_0 \left( {\overline \sigma } \right)\) and \(x^* \left( {\tau _a ,\tau _b ,\tau _k ,\overline \sigma } \right) = x_0 \left( {\overline \sigma } \right)\). Also suppose that \(\overline \sigma \) is increased to \(\sigma \prime \). Then Proposition 3(1) indicates that \(k^* \left( {\tau _a ,\tau _b ,\tau _k ,\sigma \prime } \right) = k_0 \left( {\sigma \prime } \right)\) and \(x^* \left( {\tau _a ,\tau _b ,\tau _k ,\sigma \prime } \right) = x_0 \left( {\sigma \prime } \right)\). Our problem then reduces to finding a combination of \(\left( {\tau _a \prime ,\tau _b \prime ,\tau _k \prime } \right)\) such that \(k^* \left( {\tau _a \prime ,\tau _b \prime ,\tau _k \prime ,\sigma \prime } \right) = k_0 \left( {\sigma \prime } \right)\) and \(x^* \left( {\tau _a \prime ,\tau _b \prime ,\tau _k \prime ,\sigma \prime } \right) = x_0 \left( {\sigma \prime } \right)\). However, we are unable to ascertain the relationship between τ a and \(\tau _a \prime \), τ b and \(\tau _b \prime \), and τ k and \(\tau _k \prime \). We can only rule out several possibilities. For example, we can rule out the combination such that \(\tau _a \prime >\tau _a \), \(\tau _k \prime >\tau _k \), and \(\tau _b <\tau _b \prime \) because \(x^{*} {\left( {\tau _{a} \prime ,\tau _{b} \prime ,\tau _{k} \prime ,\sigma \prime } \right)} > x^{*} {\left( {\tau _{a} ,\tau _{b} ,\tau _{k} ,\sigma \prime } \right)} > x_{0} {\left( {\sigma \prime } \right)}\). We can also rule out the combination such that \(\tau _b \prime <\tau _b \), \(\tau _k \prime >\tau _k \) and either \(\tau _a \prime >\tau _a \) or \(\tau _a \prime <\tau _a \) because \(k^{*} {\left( {\tau _{a} \prime ,\tau _{b} \prime ,\tau _{k} \prime ,\sigma \prime } \right)} > k^{*} {\left( {\tau _{a} ,\tau _{b} ,\tau _{k} ,\sigma \prime } \right)} > k_{0} {\left( {\sigma \prime } \right)}\).

QED.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jou, JB., Lee, T. Neutral Property Taxation Under Uncertainty. J Real Estate Finance Econ 37, 211–231 (2008). https://doi.org/10.1007/s11146-008-9132-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11146-008-9132-4

Keywords

JEL Classification

Navigation