Skip to main content
Log in

An algebraic interpretation of the q-Meixner polynomials

  • Published:
The Ramanujan Journal Aims and scope Submit manuscript

Abstract

An algebraic interpretation of the q-Meixner polynomials is obtained. It is based on representations of \({\mathscr {U}}_q({\mathfrak {su}}(1,1))\) on q-oscillator states with the polynomials appearing as matrix elements of unitary q-pseudorotation operators. These operators are built from q-exponentials of the \({\mathscr {U}}_q({\mathfrak {su}}(1,1))\) generators. The orthogonality, recurrence relation, difference equation, and other properties of the q-Meixner polynomials are systematically obtained in the proposed framework.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Koekoek, R., Lesky, P.A., Swarttouw, R.F.: Hypergeometric Orthogonal Polynomials and their \(q\)-Analogues, 1st edn. Springer, New York (2010)

    Book  MATH  Google Scholar 

  2. Meixner, J.: Orthogonale Polynomsysteme mit einer besonderen Gestalt der erzeugenden Funktion. J. Lond. Math. Soc. 1(1), 6–13 (1934)

    Article  MathSciNet  MATH  Google Scholar 

  3. Basu, D., Wolf, K.B.: The unitary irreducible representations of \(SL(2, R)\) in all subgroup reductions. J. Math. Phys. 23, 189–205 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  4. Vilenkin, N.J., Klimyk, A.U.: Representation of Lie Groups and Special Functions. Springer, Netherlands (1991)

    Book  MATH  Google Scholar 

  5. Granovskii, Y.I., Zhedanov, A.S.: Orthogonal polynomials in the Lie algebras. Sov. Phys. J. 29(5), 387–393 (1986). (transl. from Russian)

    Article  Google Scholar 

  6. Floreanini, R., LeTourneux, J., Vinet, L.: Quantum mechanics and polynomials of a discrete variable. Ann. Phys. 226(2), 331–349 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  7. Griffiths, R.C.: Orthogonal polynomials on the negative multinomial distribution. J. Multivar. Anal. 5(2), 271–277 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  8. Genest, V.X., Miki, H., Vinet, L., Zhedanov, A.: The multivariate Meixner polynomials as matrix elements of \(SO(d, 1)\) representations on oscillator states. J. Phys. A 47(4), 045207 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  9. Koornwinder, T.H.: Representations of the twisted SU(2) quantum group and some \(q\)-hypergeometric orthogonal polynomials. Indag. Mathe. (Proc.) 92(1), 97–117 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  10. Koelink, E.: \(q\)-Krawtchouk polynomials as spherical functions on the Hecke algebra of type B. Trans. Am. Math. Soc. 352(10), 4789–4813 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  11. Smirnov, Y., Campigotto, C.: The quantum \(q\)-Krawtchouk and \(q\)-Meixner polynomials and their related \(D\)-functions for the quantum group \(SU_q(2)\) and \(SU_q(1,1)\). J. Comput. Appl. Math. 164, 643–660 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  12. Genest, V.X., Post, S., Vinet, L., Yu, G.-F., Zhedanov, A.: \(q\)-rotations and Krawtchouk polynomials. Ramanujan J. 40(2), 335–357 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  13. Genest, V.X., Post, S., Vinet, L.: An algebraic interpretation of the multivariate \(q\)-Krawtchouk polynomials. Ramanujan J. 1, 1–31 (2016)

    MATH  Google Scholar 

  14. Gasper, G., Rahman, M.: Some systems of multivariable orthogonal \(q\)-Racah polynomials. Ramanujan J. 13(1), 389–405 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  15. Atakishiev, M.N., Atakishiev, N.M., Klimyk, A.U.: Big \(q\)-Laguerre and \(q\)-Meixner polynomials and representations of the quantum algebra \(U_q(su_{1,1})\). J. Phys. A 36(41), 10335–10347 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  16. Rosengren, H.: A new quantum algebraic interpretation of the Askey–Wilson polynomials. Contemp. Math. 254, 371–394 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  17. Macfarlane, A.J.: On \(q\)-analogues of the quantum harmonic oscillator and the quantum group \(SU(2)_q\). J. Phys. A 22(21), 4581–4588 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  18. Biedenharn, L.C.: The quantum group \(SU_q(2)\) and a \(q\)-analogue of the boson operators. J. Phys. A 22(18), L873–L878 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  19. Floreanini, R., Vinet, L.: \(q\)-Orthogonal polynomials and the oscillator quantum group. Lett. Math. Phys. 22(1), 45–54 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  20. Zhedanov, A.: Q rotations and other Q transformations as unitary nonlinear automorphisms of quantum algebras. J. Math. Phys. 34(6), 2631–2648 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  21. Truax, D.R.: Baker–Cambpell–Hausdorff relations and unitarity of \(SU(2)\) and \(SU(1,1)\) squeeze operators. Phys. Rev. D 31(8), 1988–1991 (1985)

    Article  MathSciNet  Google Scholar 

  22. Floreanini, R., Vinet, L.: Automorphisms of the \(q\)-oscillator algebra and basic orthogonal polynomials. Phys. Lett. A 180(6), 393–401 (1993)

    Article  MathSciNet  Google Scholar 

  23. Kalnins, E.G., Miller, W., Mukherjee, S.: Models of \(q\)-algebra representations: matrix elements of the \(q\)-oscillator algebra. J. Math. Phys. 34, 5333–5356 (1993)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank V. X. Genest, T. Koornwinder, M. E. H. Ismail, and A. Zhedanov for useful remarks and helpful discussions. J. G. holds an Alexander-Graham-Bell Graduate Scholarship from the Natural Sciences and Engineering Research Council (NSERC) of Canada. The research of L. V. was supported in part by the NSERC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julien Gaboriaud.

Appendices

Appendix 1: “Dual” relations

The relations previously derived in the paper are usual relations found in the literature; however, they can be given a “dual” version by the process explained in Sect. 8. Here is the list of the relations that are obtained in this fashion.

Backward relation (6.7) \(\rightarrow \)

$$\begin{aligned} \theta ^2q^{x+1}&\left( 1-q^\beta \right) {\mathscr {M}}_{n}\left( q^{-(x+1)};q^{\beta -1},\theta ^2;q\right) \nonumber \\&=\theta ^2q^{x+1}\left( 1-q^{n+\beta }\right) {\mathscr {M}}_{n}\left( q^{-x};q^{\beta },\theta ^2;q\right) \nonumber \\&\quad -q\left( 1-q^n\right) \left( 1+\theta ^2q^{x+\beta }\right) {\mathscr {M}}_{n-1}\left( q^{-x};q^{\beta },\theta ^2q^{-1};q\right) \end{aligned}$$
(10.1)

Forward relation (6.10) \(\rightarrow \)

$$\begin{aligned} \frac{1-q^{-x}}{\theta ^2\left( 1-q^\beta \right) }&{\mathscr {M}}_{n}\left( q^{-(x-1)};q^{\beta -1},\theta ^2;q\right) \nonumber \\&={\mathscr {M}}_{n+1}\left( q^{-x};q^{\beta -1},\theta ^2q;q\right) -{\mathscr {M}}_{n}\left( q^{-x};q^{\beta -1},\theta ^2;q\right) \end{aligned}$$
(10.2)

Difference equation (6.13) \(\rightarrow \)

$$\begin{aligned} \left( 1-q^x\right)&{\mathscr {M}}_n\left( q^{-x};q^{\beta -1},\theta ^2;q\right) \nonumber \\&=-\left( 1-q^n\right) \left( 1+\theta ^2q^{x+\beta -1}\right) {\mathscr {M}}_{n-1}\left( q^{-x};q^{\beta -1},\theta ^2q^{-1};q\right) \nonumber \\&\quad +\left[ \left( 1-q^n\right) \left( 1+\theta ^2q^{x+\beta -1}\right) +\theta ^2q^x\left( 1-q^{n+\beta }\right) \right] \nonumber \\&\qquad \times {M}_n\left( q^{-x};q^{\beta -1},\theta ^2;q\right) \nonumber \\&\quad -\theta ^2q^x\left( 1-q^{n+\beta }\right) {\mathscr {M}}_{n+1}\left( q^{-x};q^{\beta -1},\theta ^2q;q\right) \end{aligned}$$
(10.3)

Complementary Backward relation (7.5) \(\rightarrow \)

$$\begin{aligned}&\frac{q}{\theta ^2}\frac{1-q^n}{1-q^{\beta -1}}{\mathscr {M}}_{n-1}\left( q^{-x};q^{\beta -1},\theta ^2q^{-1};q\right) \nonumber \\&\quad ={\mathscr {M}}_{n}\left( q^{-x};q^{\beta -2},\theta ^2;q\right) \nonumber \\&\qquad -{\mathscr {M}}_{n}\left( q^{-(x+1)};q^{\beta -2},\theta ^2q^{-1};q\right) \end{aligned}$$
(10.4)

Complementary Forward relation (7.7) \(\rightarrow \)

$$\begin{aligned}&\theta ^2q^x\left( 1-q^\beta \right) {\mathscr {M}}_{n+1}\left( q^{-x};q^{\beta -1},\theta ^2q;q\right) \nonumber \\&=\theta ^2\left( 1-q^{x+\beta }\right) {\mathscr {M}}_{n}\left( q^{-x};q^{\beta },\theta ^2;q\right) \nonumber \\&\quad -\left( q^n+\theta ^2\right) \left( 1-q^x\right) {\mathscr {M}}_{n}\left( q^{-(x-1)};q^{\beta },\theta ^2q;q\right) \end{aligned}$$
(10.5)

Recurrence relation (7.9) \(\rightarrow \)

$$\begin{aligned} q^{x+1}&\left( 1-q^{n}\right) {\mathscr {M}}_n\left( q^{-x};q^{\beta -1},\theta ^2;q\right) \nonumber \\&=-q\left( 1-q^x\right) \left( q^n+\theta ^2\right) {\mathscr {M}}_n\left( q^{-(x-1)};q^{\beta -1},\theta ^2q;q\right) \nonumber \\&\quad +\left[ q\left( 1-q^x\right) \left( q^n+\theta ^2\right) +\theta ^2\left( 1-q^{x+\beta }\right) \right] {\mathscr {M}}_n\left( q^{-x};q^{\beta -1},\theta ^2;q\right) \nonumber \\&\quad -\theta ^2\left( 1-q^{x+\beta }\right) {\mathscr {M}}_n\left( q^{-(x+1)};q^{\beta -1},\theta ^2q^{-1};q\right) \end{aligned}$$
(10.6)

Appendix 2: Useful q-series identities

A number of useful q-series identities are gathered here for convenience.

The q-binomial coefficients are defined as follows:

$$\begin{aligned} {n \brack k}_q =\frac{(q;q)_n}{(q;q)_k(q;q)_{n-k}},\qquad k=0,1,2,\ldots ,n. \end{aligned}$$
(10.7)

They tend to the usual coefficients when \(q\rightarrow 1\).

The little q-exponential, \(e_q(z)\), and the big q-exponential, \(E_q(z)\), are defined by

$$\begin{aligned} e_q(z)={}_{1}\phi _{0}\left( {\begin{array}{c} {0} \\ {-} \end{array}} \mid q;z \right) =\frac{1}{(z;q)_\infty },\qquad E_q(z)={}_{0}\phi _{0}\left( {\begin{array}{c} {-} \\ {-} \end{array}} \mid q;-z \right) =(-z;q)_\infty , \end{aligned}$$
(10.8)

for \(|z|<1\). It is straightforward to see that \(e_q(z)E_q(-z)=1\). From (10.8), one easily derives the following relations:

$$\begin{aligned}&e_q(\lambda q^n)=e_q(\lambda )(\lambda ;q)_n,&\qquad&e_q(\lambda q^{-n})=\frac{e_q(\lambda )}{(\lambda q^{-n};q)_n},\nonumber \\&E_q(\lambda q^n)=\frac{E_q(\lambda )}{(-\lambda ;q)_n},&\qquad&E_q(\lambda q^{-n})=E_q(\lambda )(-\lambda q^{-n};q)_n. \end{aligned}$$
(10.9)

The Baker–Campbell–Hausdorff formula admits two q-extensions [22, 23]. The first one is

$$\begin{aligned}&E_q(\lambda X)Ye_q(-\lambda q^\alpha X)=\sum _{n=0}^{\infty }\frac{\lambda ^n}{(q;q)_n}[X,Y]_n,\nonumber \\&[X,Y]_0=Y,\qquad [X,Y]_{n+1}=q^nX[X,Y]_n-q^\alpha [X,Y]_nX,\qquad n=0,1,2,\ldots \end{aligned}$$
(10.10)

The second one is

$$\begin{aligned}&e_q(\lambda X)YE_q(-\lambda q^\alpha X)=\sum _{n=0}^{\infty }\frac{\lambda ^n}{(q;q)_n}[X,Y]_n^\prime ,\nonumber \\&[X,Y]_0^\prime =Y,\qquad [X,Y]_{n+1}^\prime =X[X,Y]_n^\prime -q^{n+\alpha }[X,Y]_n^\prime X,\qquad n=0,1,2,\ldots \end{aligned}$$
(10.11)

Let us also record that for \(XY=qYX\), one has

$$\begin{aligned} e_q(X+Y)=e_q(Y)e_q(X)\qquad \text {and}\qquad E_q(X+Y)=E_q(X)E_q(Y). \end{aligned}$$
(10.12)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gaboriaud, J., Vinet, L. An algebraic interpretation of the q-Meixner polynomials. Ramanujan J 46, 127–149 (2018). https://doi.org/10.1007/s11139-017-9908-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11139-017-9908-3

Keywords

Mathematics Subject Classification

Navigation