Skip to main content
Log in

The shape of \( \mathbb {Z}/\ell \mathbb {Z}\)-number fields

  • Published:
The Ramanujan Journal Aims and scope Submit manuscript

Abstract

Let \(\ell \) be a prime and let \(L/ \mathbb {Q}\) be a Galois number field with Galois group isomorphic to \( \mathbb {Z}/\ell \mathbb {Z}\). We show that the shape of L, see Definition 1.2, is either \(\frac{1}{2}\mathbb {A}_{\ell -1}\) or a fixed sub-lattice depending only on \(\ell \); such a dichotomy in the value of the shape only depends on the type of ramification of L. This work is motivated by a result of Bhargava and Shnidman, and a previous work of the first named author, on the shape of \( \mathbb {Z}/3 \mathbb {Z}\) number fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bayer-Fuckiger, E.: Lattices and number fields. Contemp. Math. 24, 69–84 (1999)

    Article  MathSciNet  Google Scholar 

  2. Bayer-Fuckiger, E.: Cyclotomic Modular Lattices. J. Théorie Nombres Bordeaux 12, 273–280 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bayer-Fuckiger, E.: Ideal lattices. In: Wustholz, G. (ed.) A Panorama of Number Theory or the View from Baker’s Garden. Cambridge University Press, Cambridge (2002)

    Google Scholar 

  4. Bayer-Fuckiger, E., Lenstra, H.W.: Forms in odd degree extensions and self-dual normal bases. Am. J. Math. 112, 359–373 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bayer-Fuckiger, E., Suarez, I.: Ideal lattices over totally real number fields and Euclidean minima. Arch. Math. 86, 217–225 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bachoc, C., Batut, C.: Étude algorithmique de réseaux construits avec la form trace. Exp. Math. 1(3), 183–190 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bhargava, M., Harron, P.: The equidistribution of lattice shapes of rings of integers in cubic, quartic, and quintic number fields. Preprint (2013)

  8. Bhargava, M., Shnidman, A.: On the number of cubic orders of bounded discriminant having automorphism group \(C_3\), and related problems. Algebra Number Theory 8–1, 53–88 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  9. Conner, P.E., Perlis, R.: A Survey of Trace Forms of Algebraic Number Fields. World Scientific, Singapore (1984)

    Book  MATH  Google Scholar 

  10. Conway, J.H., Sloane, N.J.A.: Sphere Packings, Lattices and Groups, 3rd edn. Springer, New York (1999)

    Book  MATH  Google Scholar 

  11. Mantilla-Soler, G.: Integral trace forms associated to cubic extensions. Algebra Number Theory 4–6, 681–699 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  12. Mantilla-Soler, G.: On number fields with equivalent integral trace forms. Int. J. Number Theory 8–7, 1569–1580 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  13. Serre, J.-P.: Local fields. Graduate Texts in Mathematics. Springer, New York (1979)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guillermo Mantilla-Soler.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mantilla-Soler, G., Monsurrò, M. The shape of \( \mathbb {Z}/\ell \mathbb {Z}\)-number fields. Ramanujan J 39, 451–463 (2016). https://doi.org/10.1007/s11139-015-9744-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11139-015-9744-2

Keywords

Mathematics Subject Classification

Navigation