The Ramanujan Journal

, Volume 39, Issue 3, pp 451–463 | Cite as

The shape of \( \mathbb {Z}/\ell \mathbb {Z}\)-number fields

  • Guillermo Mantilla-Soler
  • Marina Monsurrò


Let \(\ell \) be a prime and let \(L/ \mathbb {Q}\) be a Galois number field with Galois group isomorphic to \( \mathbb {Z}/\ell \mathbb {Z}\). We show that the shape of L, see Definition 1.2, is either \(\frac{1}{2}\mathbb {A}_{\ell -1}\) or a fixed sub-lattice depending only on \(\ell \); such a dichotomy in the value of the shape only depends on the type of ramification of L. This work is motivated by a result of Bhargava and Shnidman, and a previous work of the first named author, on the shape of \( \mathbb {Z}/3 \mathbb {Z}\) number fields.


Number fields Shape Lattices 

Mathematics Subject Classification

11R04 11R20 11R80 11R33 11H99 11E12 


  1. 1.
    Bayer-Fuckiger, E.: Lattices and number fields. Contemp. Math. 24, 69–84 (1999)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Bayer-Fuckiger, E.: Cyclotomic Modular Lattices. J. Théorie Nombres Bordeaux 12, 273–280 (2000)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Bayer-Fuckiger, E.: Ideal lattices. In: Wustholz, G. (ed.) A Panorama of Number Theory or the View from Baker’s Garden. Cambridge University Press, Cambridge (2002)Google Scholar
  4. 4.
    Bayer-Fuckiger, E., Lenstra, H.W.: Forms in odd degree extensions and self-dual normal bases. Am. J. Math. 112, 359–373 (1990)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Bayer-Fuckiger, E., Suarez, I.: Ideal lattices over totally real number fields and Euclidean minima. Arch. Math. 86, 217–225 (2006)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Bachoc, C., Batut, C.: Étude algorithmique de réseaux construits avec la form trace. Exp. Math. 1(3), 183–190 (1992)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Bhargava, M., Harron, P.: The equidistribution of lattice shapes of rings of integers in cubic, quartic, and quintic number fields. Preprint (2013)Google Scholar
  8. 8.
    Bhargava, M., Shnidman, A.: On the number of cubic orders of bounded discriminant having automorphism group \(C_3\), and related problems. Algebra Number Theory 8–1, 53–88 (2014)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Conner, P.E., Perlis, R.: A Survey of Trace Forms of Algebraic Number Fields. World Scientific, Singapore (1984)CrossRefMATHGoogle Scholar
  10. 10.
    Conway, J.H., Sloane, N.J.A.: Sphere Packings, Lattices and Groups, 3rd edn. Springer, New York (1999)CrossRefMATHGoogle Scholar
  11. 11.
    Mantilla-Soler, G.: Integral trace forms associated to cubic extensions. Algebra Number Theory 4–6, 681–699 (2010)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Mantilla-Soler, G.: On number fields with equivalent integral trace forms. Int. J. Number Theory 8–7, 1569–1580 (2012)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Serre, J.-P.: Local fields. Graduate Texts in Mathematics. Springer, New York (1979)Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Departamento de MatemáticasUniversidad de los AndesBogotáColombia
  2. 2.Università Eropea di RomaRomeItaly

Personalised recommendations