Quality of Life Research

, Volume 21, Issue 1, pp 1–11 | Cite as

Measures of relative importance for health-related quality of life

  • Tolulope T. Sajobi
  • Lisa M. Lix
  • Ian Clara
  • John Walker
  • Lesley A. Graff
  • Patricia Rawsthorne
  • Norine Miller
  • Linda Rogala
  • Rachel Carr
  • Charles N. Bernstein



In health-related quality of life (HRQOL) studies, data are often collected on multiple domains for two or more groups of study participants. Quantitative measures of relative importance, which are used to rank order the domains based on their ability to discriminate between groups, are an alternative to multiple tests of significance on the group differences. This study describes relative importance measures based on logistic regression (LR) and multivariate analysis of variance (MANOVA) models.


Relative importance measures are illustrated using data from the Manitoba Inflammatory Bowel Disease (IBD) Cohort Study. Study participants with self-reported active (n = 244) and inactive (n = 105) disease were compared on 12 HRQOL domains from the Inflammatory Bowel Disease Questionnaire (IBDQ) and Medical Outcomes Study 36-item Short-Form (SF-36) Questionnaire.


All but two relative importance measures ranked the IBDQ bowel symptoms and emotional health domains as most important.


MANOVA-based importance measures are recommended for multivariate normal data and when group covariances are equal, while LR measures are recommended for non-normal data and when the correlations among the domains are small. Relative importance measures can be used in exploratory studies to identify a small set of domains for further research.


Discriminant analysis Health-related quality of life Inflammatory bowel disease Logistic model Multivariate analysis Relative importance 



Adjusted discriminant ratio coefficient


Adjusted Pratt’s Index


Bodily pain


Bowel symptoms


Descriptive discriminant analysis


Discriminant ratio coefficient


Emotional health


General health


Health-related quality of life


Inflammatory bowel disease


Inflammatory Bowel Disease Questionnaire


Logistic regression


Multivariate analysis of variance


Mental health


Ordinary least squares


Physical functioning


Pratt’s index


Role emotional


Role physical


Relative weight


Rescaled relative weight


Standardized discriminant function coefficient


Social functioning


36-Item Short Form Questionnaire


Standardized logistic regression coefficient


Systemic symptoms





This research was supported by a Canadian Institutes of Health Research (CIHR) Vanier Graduate Scholarship to the first author, funding from the Manitoba Health Research Council and a CIHR New Investigator Award to the second author, funding from a Crohn’s and Colitis Foundation of Canada Research Investigator Award and the Bingham Chair in Gastroenterology to the last author and funding from a CIHR Operating Grant to the research team.

Conflict of interest

Dr. Lix has received funding from Amgen in the form of an unrestricted research grant. In the past year, Dr. Bernstein has received consulting fees from Abbott Canada and an unrestricted educational grant from Axcan Pharma.


  1. 1.
    Fairclough, D. L. (2002). Design and analysis of quality of life studies in clinical trials. New York: Chapman & Hall.Google Scholar
  2. 2.
    Sheehan-Holt, J. K. (1998). MANOVA simultaneous test procedures: The power and robustness of restricted multivariate contrasts. Journal of Educational and Psychological Measurement, 58, 861–881.CrossRefGoogle Scholar
  3. 3.
    Wu, Y., Hu, W., Xia, Y., Ma, J., Liu, M., & Cui, N. (2006). Quality of life of nasopharyngeal carcinoma survivors in Mainland China. Quality of Life Research, 16, 65–74.PubMedCrossRefGoogle Scholar
  4. 4.
    Laaksonen, C., Aromaa, M., Heinonen, O. J., Koivusilta, L., Koski, P., Suominen, S., et al. (2008). Health related quality of life in 10-year-old school children. Quality of Life Research, 17, 1049–1054.PubMedCrossRefGoogle Scholar
  5. 5.
    Dunn, W. S., Mount, M. K., Barrick, M. R., & Ones, D. S. (1995). Relative importance of personality and general mentality ability in managers’ judgments of applicant qualifications. Journal of Applied Psychology, 80, 500–509.PubMedCrossRefGoogle Scholar
  6. 6.
    Hobson, C. J., & Gibson, F. W. (1983). Policy capturing as an approach to understanding and improving performance appraisal: A review of the literature. Academy of Management Review, 8, 640–649.PubMedGoogle Scholar
  7. 7.
    Healy, M. J. R. (1990). Measuring importance. Statistics in Medicine, 9, 633–637.PubMedCrossRefGoogle Scholar
  8. 8.
    Curran, D., Molenberghs, G., Fayers, P. M., & Machin, D. (1998). Incomplete quality of life data in randomized trials: Missing forms. Statistics in Medicine, 17, 697–709.PubMedCrossRefGoogle Scholar
  9. 9.
    Rose, M. S., & Koshman, M. L. (1999). Statistical issues encountered in the comparison of health-related quality of life in diseased patients to published general population norms: Problems and solutions. Journal of Clinical Epidemiology, 52, 405–412.PubMedCrossRefGoogle Scholar
  10. 10.
    Beaumont, J. L., Lix, L. M., Yost, K. J., & Hahn, E. A. (2006). Application of robust statistical methods for sensitivity analysis of health-related quality of life outcomes. Quality of Life Research, 15, 349–356.PubMedCrossRefGoogle Scholar
  11. 11.
    Menard, S. (1995). Applied logistic regression analysis. Thousand Oaks, CA: Sage.Google Scholar
  12. 12.
    Thomas, D. R., Zumbo, B. D., Zhu, P., & Dutta, S. (2008). On measuring the relative importance of explanatory variables in a logistic regression. Journal of Modern Applied Statistical Methods, 7, 21–38.Google Scholar
  13. 13.
    Traxel, N. M., & Azen, R. (2006). Predictor importance in logistic regression: An extension of dominance analysis. Poster presented at the 114th annual convention of the American psychological association, New Orleans, LA.Google Scholar
  14. 14.
    Tonidandale, S., & LeBreton, J. M. (2010). Determining the relative importance of predictors in logistic regression: An extension of relative weight analysis. Organizational Research Methods, 13, 767–781.CrossRefGoogle Scholar
  15. 15.
    Huberty, C. J., & Wisenbaker, J. M. (1992). Variable importance in multivariate group comparisons. Journal of Educational Statistics, 17, 75–91.CrossRefGoogle Scholar
  16. 16.
    Thomas, D. R. (1992). Interpreting discriminant functions: A data analytic approach. Multivariate Behavioral Research, 27, 335–362.CrossRefGoogle Scholar
  17. 17.
    Cohen, J. (1962). The statistical power of abnormal-social psychological research: A review. Journal of Abnormal and Social Psychology, 65, 145–153.PubMedCrossRefGoogle Scholar
  18. 18.
    Olejnik, S., & Algina, J. (2000). Measures of effect size for comparative studies: Applications, interpretations, and limitations. Educational Psychology, 25, 241–286.Google Scholar
  19. 19.
    Agresti, A. (1996). An introduction to categorical data analysis. New York: Wiley.Google Scholar
  20. 20.
    Menard, S. (2004). Six approaches to calculating standardized logistic regression coefficients. The American Statistician, 58, 218–223.CrossRefGoogle Scholar
  21. 21.
    Agresti, A., & Finlay, B. (1986). Statistical methods for the social sciences (2nd ed.). San Francisco: Dellen/Macmillan.Google Scholar
  22. 22.
    Kaufman, R. L. (1996). Comparing effects in dichotomous logistic regression: A variety of standardized coefficients. Social Science Quarterly, 77, 90–110.Google Scholar
  23. 23.
    Nagelkerke, N. J. D. (1991). A note on a general definition of coefficient of determination. Biometrika, 78, 691–692.CrossRefGoogle Scholar
  24. 24.
    Cox, D. R., & Snell, E. J. (1989). The analysis of binary data (2nd ed.). London: Chapman and Hall.Google Scholar
  25. 25.
    Estrella, A. (1998). A new measure of fit for equations with dichotomous dependent variables. Journal of Business and Economic Statistics, 16, 198–205.CrossRefGoogle Scholar
  26. 26.
    Pratt, J. W. (1987). Dividing the indivisible: Using simple symmetry to partition variance explained. In T. Pukkila & S. Puntanen (Eds.), Proceedings of the second international conference in statistics (pp. 245–260). Tampere, Finland: University of Tampere.Google Scholar
  27. 27.
    Thomas, D. R., Hughes, E., & Zumbo, B. D. (1998). On variable importance in linear regression. Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, 45, 253–275.Google Scholar
  28. 28.
    Ochieng, C. O., & Zumbo, B. D. (2001). Examination of a variable ordering index in linear regression models: An assessment of the relative Pratt index in Likert data. Paper presented at the Bob Conry conference on measurement evaluation and research and methodology, Vancouver, Canada.Google Scholar
  29. 29.
    Witherill, G. G. (1986). Regression analysis with applications. London: Chapman & Hall.Google Scholar
  30. 30.
    Azen, R., & Budescu, D. V. (2003). Comparing predictors in multivariate regression models: An extension of dominance analysis. Journal of Educational and Behavioral Statistics, 31, 157–180.CrossRefGoogle Scholar
  31. 31.
    Johnson, J. W. (2000). A heuristic method for estimating the relative weight of predictor variables in multiple regression. Multivariate Behavioral Research, 35, 1–19.CrossRefGoogle Scholar
  32. 32.
    Thomas, D. R., & Zumbo, B. D. (1996). Using a measure of variable importance to investigate the standardization of discriminant coefficients. Journal of Educational and Behavioral Statistics, 21, 110–130.Google Scholar
  33. 33.
    Huberty, C. J., & Olejnik, S. (2006). Applied MANOVA and discriminant analysis. Hoboken, New Jersey: Wiley.CrossRefGoogle Scholar
  34. 34.
    Pohar, M., Blas, M., & Turk, S. (2004). Comparison of logistic regression and linear discriminant analysis: A simulation study. Metodoloski zveski, 1, 143–161.Google Scholar
  35. 35.
    Jennrich, R. I. (1977). Stepwise discriminant analysis. In K. Enslein, A. Ralston, & H. S. Wilf (Eds.), Mathematical methods for digital computers (Vol. 3). New York: Wiley.Google Scholar
  36. 36.
    Rencher, A. C. (1992). Interpretation of canonical discriminant functions, canonical variates, and principal components. The American Statistician, 46, 217–225.CrossRefGoogle Scholar
  37. 37.
    Finch, W. H., & Laking, T. (2008). Evaluation of the use of standardized weights for interpreting results from a descriptive discriminant analysis. Multiple Linear Regression Viewpoints, 34, 19–34.Google Scholar
  38. 38.
    Gibbons, L. B., & Hosmer, D. W. (1991). Conditional logistic regression with missing data. Communications in Statistics, Part B, 20, 109–120.Google Scholar
  39. 39.
    Little, R. J. A., & Rubin, D. B. (2002). Statistical analysis with missing data (2nd ed.). New Jersey: Wiley.Google Scholar
  40. 40.
    SAS Institute Inc. (2008). SAS/STAT user’s guide, version 9.2. Cary, NC: SAS Institute Inc.Google Scholar
  41. 41.
    Lix, L. M., Graff, L. A., Walker, J. R. L., et al. (2008). Longitudinal study of quality of life and psychological functioning for active, fluctuating, and inactive disease patterns. Inflammatory Bowel Diseases, 14, 1575–1584.PubMedCrossRefGoogle Scholar
  42. 42.
    Graff, L. A., Walker, J. R., Lix, L. M., et al. (2006). The relationship of inflammatory bowel disease type and activity to psychological functioning and quality of life. Clinical Gastoroenterology and Hepatology, 4, 1491–1501.CrossRefGoogle Scholar
  43. 43.
    Clara, I., Lix, L. M., Walker, J. R., et al. (2009). The Manitoba IBD index: Evidence for a new and simple indicator of IBD activity. American Journal of Gastroenterology, 104, 1754–1763.PubMedCrossRefGoogle Scholar
  44. 44.
    Guyatt, G. H., Mitchell, A., Irvine, E. J., et al. (1989). A new measure of health status for clinical trials in inflammatory bowel disease. Gastroenterology, 96, 804–810.PubMedGoogle Scholar
  45. 45.
    Ware, J. E., & Sherbourne, C. D. (1992). The MOS 36-item short-form health survey (SF-36). I. Conceptual framework and item selection. Medical Care, 30, 473–483.PubMedCrossRefGoogle Scholar
  46. 46.
    Irvine, E. J. (1996). Effects of budesonide therapy on quality of life in active Crohn′s disease. Respiratory Clinical Forums, 18, 81–89.Google Scholar
  47. 47.
    Shapiro, S. S., & Wilk, M. B. (1965). An analysis of variance test for normality (complete samples). Biometrika, 52, 591–611.Google Scholar
  48. 48.
    LeBreton, J. M., & Tonidandel, S. (2008). Multivariate relative importance: Extending relative weight analysis to ultivariate criterion spaces. Journal of Applied Psychology, 93, 329–345.PubMedCrossRefGoogle Scholar
  49. 49.
    Lievens, F., Van Hoye, G., & Schreurs, B. (2005). Examining the relationship between employer knowledge dimensions and organizational attractiveness: An application in a military context. Journal of Occupational and Organizational Psychology, 78, 553–572.CrossRefGoogle Scholar
  50. 50.
    Glomb, T. M., Kammeyer-Mueller, J. D., & Rotundo, M. (2004). Emotional labor demands and compensating wage differentials. Journal of Applied Psychology, 84, 700–714.CrossRefGoogle Scholar
  51. 51.
    Hawkins, D. M. (1981). A new test for multivariate normality and homoscedasticity. Technometrics, 23, 105–110.CrossRefGoogle Scholar
  52. 52.
    Box, G. E. P. (1949). A general distribution theory for a class of likelihood criteria. Biometrika, 36, 317–346.PubMedGoogle Scholar
  53. 53.
    Mardia, K. V. (1980). Tests of univariate and multivariate normality. In P. R. Krishnaiah (Ed.), Handbook of statistics (Vol. 1, pp. 279–320). Amsterdam: North-Holland.Google Scholar
  54. 54.
    Shapiro, S. S., Wilk, M. B., & Chen, H. J. (1968). A comparative study of various tests for normality. Journal of the American Statistical Association, 63, 1343–1372.CrossRefGoogle Scholar
  55. 55.
    Huberty, C. J. (1975). The stability of three indices of relative variable contribution in discriminant analysis. Journal of Experimental Education, 44, 59–64.Google Scholar
  56. 56.
    Dalgleish, L. I. (1994). Discriminant analysis: Statistical inference using the jackknife and bootstrap procedures. Psychological Bulletin, 116, 498–508.CrossRefGoogle Scholar
  57. 57.
    Guyatt, G. H., Osoba, D., Wu, A. W., Wyrwich, K. W., Norman, G. R., & the Clinical Significance Consensus Meeting Group. (2002). Methods to explain the clinical significance of health status measures. Mayo Clinic Proceedings, 77, 371–383.PubMedCrossRefGoogle Scholar
  58. 58.
    Wyrwich, K. W., Nienaber, N. A., Tierney, W. M., & Wolinsky, F. D. (1999). Linking clinical relevance and statistical significance in evaluating intra-individual changes in health-related quality of life. Medical Care, 37, 469–478.PubMedCrossRefGoogle Scholar
  59. 59.
    Kim, K., & Timm, N. (2007). Univariate and multivariate general linear models: Theory and applications with SAS (2nd ed.). New York: Chapman & Hall/CRC.Google Scholar
  60. 60.
    Benjamini, Y., & Hochberg, Y. (1997). Multiple hypotheses testing with weights. Scandinavian Journal of Statistics, 24, 407–418.CrossRefGoogle Scholar
  61. 61.
    Maurer, W., Hothorn, L. A., & Lechmacher, W. (1995). Multiple comparisons in drug clinical trials and preclinical assays: A priori ordered hypotheses. In J. Vollman (Ed.), Biometrie in der chemische-pharmazeutichen Industrie (Vol. 6). Stuttgart: Fischer Verlag.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Tolulope T. Sajobi
    • 1
  • Lisa M. Lix
    • 1
    • 2
  • Ian Clara
    • 2
    • 4
  • John Walker
    • 2
    • 3
    • 4
  • Lesley A. Graff
    • 2
    • 3
  • Patricia Rawsthorne
    • 2
  • Norine Miller
    • 2
  • Linda Rogala
    • 2
  • Rachel Carr
    • 2
    • 4
  • Charles N. Bernstein
    • 2
    • 5
  1. 1.School of Public HealthUniversity of SaskatchewanSaskatoonCanada
  2. 2.University of Manitoba Inflammatory Bowel Disease Clinical and Research CentreUniversity of ManitobaWinnipegCanada
  3. 3.Department of Clinical Health PsychologyUniversity of ManitobaWinnipegCanada
  4. 4.Department of Community Health SciencesUniversity of ManitobaWinnipegCanada
  5. 5.Department of Internal MedicineUniversity of ManitobaWinnipegCanada

Personalised recommendations