Advertisement

Quality & Quantity

, Volume 50, Issue 2, pp 767–790 | Cite as

Intuitionistic fuzzy sets in questionnaire analysis

  • Donata Marasini
  • Piero Quatto
  • Enrico Ripamonti
Article

Abstract

Fuzzy sets represent an extension of the concept of set, used to mathematically model veiled and indefinite concepts, such as those of youth, poverty, customer satisfaction and so on. Fuzzy theory introduces a membership function, expressing the degree of membership of the elements to a set. Intuitionistic fuzzy sets and hesitant fuzzy sets are two extensions of the theory of fuzzy sets, in which non-membership degrees and hesitations expressed by a set of experts are, respectively, introduced. In this paper, we apply intuitionistic fuzzy sets to questionnaire analysis, with a focus on the construction of membership, non-membership and uncertainty functions. We also suggest the possibility of considering intuitionistic hesitant fuzzy sets as a valuable theoretical framework. We apply these models to the evaluation of a Public Administration and we assess our results through a sensitivity analysis.

Keywords

Intuitionistic fuzzy sets Hesitant fuzzy sets Membership functions Non-membership functions Uncertainty functions Questionnaire analysis 

References

  1. Atanassov, K.T.: Intuitionistic fuzzy sets. Fuzzy Set Syst 20(2), 87–96 (1986)CrossRefGoogle Scholar
  2. Atanassov, K.T.: On Intuitionistic Fuzzy Sets Theory. Springer, New York (2012)CrossRefGoogle Scholar
  3. Bede, B.: Mathematics of Fuzzy Sets and Fuzzy Logic. Springer, New York (2013)CrossRefGoogle Scholar
  4. Beliakov, G., Bustince, H., Goswami, D.P., Mukherjee, U.K., Pal, N.R.: On averaging operators for Atanassov’s intuitionistic fuzzy sets. Inform Sciences 181(6), 1116–1124 (2011)CrossRefGoogle Scholar
  5. Bellman, R.E., Zadeh, L.A.: Decision-making in a fuzzy environment. Manag. Sci. 17(4), B-141 (1970)CrossRefGoogle Scholar
  6. Betti, G., Cheli, B., Lemmi, A., Verma, V.: On the construction of fuzzy measures for the analysis of poverty and social exclusion. Stat. Appl. Inf. Sci. IV(2), 23–26 (2006)Google Scholar
  7. Betti, G., D’Agostino, A., Neri, L.: Educational mismatch of graduates: a multidimensional and fuzzy indicator. Soc. Indic. Res. 103(3), 465–480 (2011)CrossRefGoogle Scholar
  8. Biswas, R.: An application of fuzzy sets in students’ evaluation. Fuzzy Set Syst 74(2), 187–194 (1995)CrossRefGoogle Scholar
  9. Black, M.: Vagueness. An exercise in logical analysis. Philos. Sci. 4(4), 427–455 (1937)CrossRefGoogle Scholar
  10. Castillo, C., Lorenzana, T.: Evaluation of business scenarios by means of composite indicators. Fuzzy Econ. Rev. 15(2), 3–20 (2010)Google Scholar
  11. Cerioli, A., Zani, S.: A fuzzy approach to the measurement of poverty. In: Dagum, C., Zenga, M. (eds.) Income and wealth distribution, inequality and poverty. Studies in Contemporary Economics, pp. 272–284. Springer, Berlin (1990)CrossRefGoogle Scholar
  12. Cheli, B.: Totally fuzzy and relative measures of poverty in dynamic context. Metron 53, 83–205 (1995)Google Scholar
  13. Cheli, B., Lemmi, A.: A “Totally” fuzzy and relative approach to the multidimensional analysis of poverty. Econ. Notes 24, 115–134 (1995)Google Scholar
  14. Chen, S.-M., Lee, C.-H.: New methods for students’ evaluation using fuzzy sets. Fuzzy Set Syst 104(2), 209–218 (1999)CrossRefGoogle Scholar
  15. Chien, C.-J., Tsai, H.-H.: Using fuzzy numbers to evaluate perceived service quality. Fuzzy Sets Syst. 116(2), 289–300 (2000)CrossRefGoogle Scholar
  16. Chung, S., Choi, H., Lee, S.S.Y.: Measuring social capital in the Republic of Korea with mixed methods: application of factor analysis and fuzzy-set ideal type approach. Soc. Indic. Res. 117(1), 45–64 (2014)CrossRefGoogle Scholar
  17. Crocetta, C., Delvecchio, G.: A fuzzy measure of satisfaction for university education as a key for employment. In: Fabbris, L. (ed.) Effectiveness of University Education in Italy, pp. 11–27. Springer, Berlin (2007)Google Scholar
  18. Cugnata, F., Salini, S.: Model-based approach for importance—performance analysis. Qual. Quant. 48(6), 3053–3064 (2013)CrossRefGoogle Scholar
  19. Darestani, A.Y., Jahromi, A.E.: Measuring customer satisfaction using a fuzzy inference system. J. Appl. Sci. 9(3), 469–478 (2009)CrossRefGoogle Scholar
  20. da Silva, C.F.D., de Araújo Batista, D., de Medeiros, D.D.: A proposed method to evaluate the quality of services using Fuzzy sets theory. Qual. Quant. 48(2), 871–885 (2014)CrossRefGoogle Scholar
  21. Delgado, M., Ruiz, D., Sanchez, D., Vila, A.: Fuzzy quantification: a state of the art. Fuzzy Set Syst. 242, 1–30 (2014)CrossRefGoogle Scholar
  22. D’Elia, A., Piccolo, D.: A mixture model for preferences data analysis. Comput. Stat. Data Anal. 49(3), 917–934 (2005)CrossRefGoogle Scholar
  23. Despi, I., Opris, D., Yalcin, E.: Generalised Atanassov intuitionistic fuzzy sets. In eKNOW 2013, The Fifth International Conference on Information, Process, and Knowledge Management (pp. 51–56) (2013)Google Scholar
  24. Dubois, D., Ostasiewicz, W., Prade, H.: Fuzzy sets: history and basic notions. In: Dubois, D., Prade, H. (eds.) Fundamentals of Fuzzy Sets, pp. 21–124. Springer, New York (2000)CrossRefGoogle Scholar
  25. Goldstein, H., Rasbash, J., Browne, W., Woodhouse, G., Poulain, M.: Multilevel models in the study of dynamic household structures. Eur. J. Popul. 16(4), 373–387 (2000)CrossRefGoogle Scholar
  26. Goguen, J.A.: L-fuzzy sets. J. Math. Anal. Appl. 18(2), 145–174 (1967)CrossRefGoogle Scholar
  27. Kwong, C.K., Bai, H.: A fuzzy AHP approach to the determination of importance weights of customer requirements in quality function deployment. J. Intell. Manuf. 13(5), 367–377 (2002)CrossRefGoogle Scholar
  28. Iannario, M., Piccolo, D.: CUB models: Statistical methods and empirical evidence. In: Kennet, R., Salini, S. (eds.) Modern Analysis of Customer Surveys: With Applications using R, pp. 231–258. Wiley, Chichester (2012)Google Scholar
  29. Lalla, M., Facchinetti, G., Mastroleo, G.: Ordinal scales and fuzzy set systems to measure agreement: an application to the evaluation of teaching activity. Qual. Quant. 38(5), 577–601 (2005)CrossRefGoogle Scholar
  30. Li, D.-F.: Decision and Game Theory in Management with Intuitionistic Fuzzy Sets, vol. 308. Springer, New York (2014)Google Scholar
  31. Manton, K.G., Tolley, H.D., Woodbury, M.A.: Statistical Applications Using Fuzzy Sets. Wiley, New York (1994)Google Scholar
  32. Marasini, D., Quatto, P.: Descriptive Analysis of student ratings. J. Appl. Quant. Methods 6(4), 125–133 (2011)Google Scholar
  33. Piccolo, D., D’Elia, A.: A new approach for modelling consumers’ preferences. Food Qual. Prefer. 19, 247–259 (2008)CrossRefGoogle Scholar
  34. Qian, G., Wang, H., Feng, X.: Generalized hesitant fuzzy sets and their application in decision support system. Knowl.-Based Syst. 37, 357–365 (2013)CrossRefGoogle Scholar
  35. Rodríguez, R.M., Martínez, L., Torra, V., Xu, Z.S., Herrera, F.: Hesitant fuzzy sets: state of the art and future directions. Int. J. Intell. Syst. 29, 495–524 (2014)CrossRefGoogle Scholar
  36. Smithson, M., Verkuilen, J.: Fuzzy Set Theory: Applications in the Social Sciences. Sage, London (2006)Google Scholar
  37. Torra, V.: Hesitant fuzzy sets. Int. J. Intell. Syst. 25(6), 529–539 (2010)Google Scholar
  38. Xia, M., Xu, Z., Chen, N.: Some hesitant fuzzy aggregation operators with their application in group decision making. Group Decis. Negot. 22(2), 259–279 (2013)CrossRefGoogle Scholar
  39. Xu, Z.: Hesitant Fuzzy Sets Theory, vol. 314. Springer, New York (2014a)Google Scholar
  40. Xu, Z.: Hesitant fuzzy Aggregation Operators and Their Applications. Hesitant Fuzzy Sets Theory. Springer, New York (2014b)CrossRefGoogle Scholar
  41. Xu, Z.: Intuitionistic Preference and Interactive Decision Making. Springer, New York (2014c)CrossRefGoogle Scholar
  42. Zadeh, L.A.: Fuzzy sets. Inf. Control 8(3), 338–353 (1965)CrossRefGoogle Scholar
  43. Zani, S., Milioli, M.A., Morlini, I.: Fuzzy methods and satisfaction indices. In: Kennet, R., Salini, S. (eds.) Modern Analysis of Customer Surveys: With Applications Using R, pp. 439–455. Wiley, Chichester (2012)Google Scholar
  44. Zani, S., Milioli, M.A., Morlini, I.: Fuzzy composite indicators: an application for measuring customer satisfaction. Advances in Theoretical and Applied Statistics, pp. 243–253. Springer, New York (2013)CrossRefGoogle Scholar
  45. Zhu, B., Xu, Z., Xia, M.: Dual hesitant fuzzy sets. J. Appl. Math. (2012). doi: 10.1155/2012/879629 Google Scholar
  46. Zimmermann, H.J.: Fuzzy set theory. Wiley Interdiscip. Rev. 2(3), 317–332 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Donata Marasini
    • 1
  • Piero Quatto
    • 1
  • Enrico Ripamonti
    • 1
  1. 1.Statistical Section, Department of Economics, Management and StatisticsUniversity of Milan-BicoccaMilanItaly

Personalised recommendations