Master Lovas–Andai and equivalent formulas verifying the \(\frac{8}{33}\) two-qubit Hilbert–Schmidt separability probability and companion rational-valued conjectures

  • Paul B. Slater


We begin by investigating relationships between two forms of Hilbert–Schmidt two-rebit and two-qubit “separability functions”—those recently advanced by Lovas and Andai (J Phys A Math Theor 50(29):295303, 2017), and those earlier presented by Slater (J Phys A 40(47):14279, 2007). In the Lovas–Andai framework, the independent variable \(\varepsilon \in [0,1]\) is the ratio \(\sigma (V)\) of the singular values of the \(2 \times 2\) matrix \(V=D_2^{1/2} D_1^{-1/2}\) formed from the two \(2 \times 2\) diagonal blocks (\(D_1, D_2\)) of a \(4 \times 4\) density matrix \(D= \left||\rho _{ij}\right||\). In the Slater setting, the independent variable \(\mu \) is the diagonal-entry ratio \(\sqrt{\frac{\rho _{11} \rho _ {44}}{\rho _ {22} \rho _ {33}}}\)—with, of central importance, \(\mu =\varepsilon \) or \(\mu =\frac{1}{\varepsilon }\) when both \(D_1\) and \(D_2\) are themselves diagonal. Lovas and Andai established that their two-rebit “separability function” \(\tilde{\chi }_1 (\varepsilon )\) (\(\approx \varepsilon \)) yields the previously conjectured Hilbert–Schmidt separability probability of \(\frac{29}{64}\). We are able, in the Slater framework (using cylindrical algebraic decompositions [CAD] to enforce positivity constraints), to reproduce this result. Further, we newly find its two-qubit, two-quater[nionic]-bit and “two-octo[nionic]-bit” counterparts, \(\tilde{\chi _2}(\varepsilon ) =\frac{1}{3} \varepsilon ^2 \left( 4-\varepsilon ^2\right) \), \(\tilde{\chi _4}(\varepsilon ) =\frac{1}{35} \varepsilon ^4 \left( 15 \varepsilon ^4-64 \varepsilon ^2+84\right) \) and \(\tilde{\chi _8} (\varepsilon )= \frac{1}{1287}\varepsilon ^8 \left( 1155 \varepsilon ^8-7680 \varepsilon ^6+20160 \varepsilon ^4-25088 \varepsilon ^2+12740\right) \). These immediately lead to predictions of Hilbert–Schmidt separability/PPT-probabilities of \(\frac{8}{33}\), \(\frac{26}{323}\) and \(\frac{44482}{4091349}\), in full agreement with those of the “concise formula” (Slater in J Phys A 46:445302, 2013), and, additionally, of a “specialized induced measure” formula. Then, we find a Lovas–Andai “master formula,” \(\tilde{\chi _d}(\varepsilon )= \frac{\varepsilon ^d \Gamma (d+1)^3 \, _3\tilde{F}_2\left( -\frac{d}{2},\frac{d}{2},d;\frac{d}{2}+1,\frac{3 d}{2}+1;\varepsilon ^2\right) }{\Gamma \left( \frac{d}{2}+1\right) ^2}\), encompassing both even and odd values of d. Remarkably, we are able to obtain the \(\tilde{\chi _d}(\varepsilon )\) formulas, \(d=1,2,4\), applicable to full (9-, 15-, 27-) dimensional sets of density matrices, by analyzing (6-, 9, 15-) dimensional sets, with not only diagonal \(D_1\) and \(D_2\), but also an additional pair of nullified entries. Nullification of a further pair still leads to X-matrices, for which a distinctly different, simple Dyson-index phenomenon is noted. C. Koutschan, then, using his HolonomicFunctions program, develops an order-4 recurrence satisfied by the predictions of the several formulas, establishing their equivalence. A two-qubit separability probability of \(1-\frac{256}{27 \pi ^2}\) is obtained based on the operator monotone function \(\sqrt{x}\), with the use of \(\tilde{\chi _2}(\varepsilon )\).


Two-qubits Separability probabilities Hilbert–Schmidt measure Random matrices Quaternions X-states 



A number of people provided interesting comments in regard to questions posted on the Mathematics, Mathematica, MathOverflow and Physics Stack Exchanges. I discussed the two-quaterbit PPT-probability problem—and other items—extensively with (the always helpful/insightful) Charles Dunkl. Christoph Koutschan, as noted, performed certain calculations laying the foundation for a formal proof that the Lovas–Andai and “concise” formulas yield the same set of results. Christian Krattenthaler also responded to certain queries.


  1. 1.
    Lovas, A., Andai, A.: Invariance of separability probability over reduced states in \(4 \times 4\) bipartite systems. J. Phys. A: Math. Theor. 50(29), 295303 (2017).
  2. 2.
    Slater, P.B.: Dyson indices and Hilbert–Schmidt separability functions and probabilities. J. Phys. A 40, 14279 (2007)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Slater, P.B.: Extended studies of separability functions and probabilities and the relevance of Dyson indices. J. Geom. Phys. 58, 1101–1123 (2008)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Slater, P.B.: Eigenvalues, separability and absolute separability of two-qubit states. J. Geom. Phys. 59, 17–31 (2009)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Slater, P.B.: Ratios of maximal concurrence-parameterized separability functions, and generalized Peres–Horodecki conditions. J. Phys. A 42, 465305 (2009)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Dumitriu, I., Edelman, A.: Matrix models for beta ensembles. J. Math. Phys. 43, 5830–5847 (2002)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Strzeboński, A.: Cylindrical algebraic decomposition using local projections. J. Symb. Comput. 76, 36–64 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Slater, P.B.: A concise formula for generalized two-qubit Hilbert–Schmidt separability probabilities. J. Phys. A 46, 445302 (2013)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Provost, S.B.: Moment-based density approximants. Math. J. 9, 727–756 (2005)Google Scholar
  10. 10.
    Paule, P., Schorn, M.: A mathematica version of Zeilberger’s algorithm for proving binomial coefficient identities. J. Symb. Comput. 20(5–6), 673–698 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Caves, C.M., Fuchs, C.A., Rungta, P.: Entanglement of formation of an arbitrary state of two rebits. Found. Phys. Lett. 14, 199–212 (2001)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Fei, J., Joynt, R.: Numerical computations of separability probabilities. Rep. Math. Phys. 78(2), 177–182 (2016), ISSN 0034-4877.
  13. 13.
    Slater, P.B., Dunkl, C.F.: Moment-based evidence for simple rational-valued Hilbert–Schmidt generic \(2 \times 2\) separability probabilities. J. Phys. A 45, 095305 (2012)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Gamel, O.: Entangled Bloch spheres: Bloch matrix and two-qubit state space. Phys. Rev. A 93(6), 062320 (2016)ADSMathSciNetCrossRefGoogle Scholar
  15. 15.
    Shang, J., Seah, Y.-L., Ng, H.K., Nott, D.J., Englert, B.-G.: Monte Carlo sampling from the quantum state space. I. New J. Phys. 17(4), 043017 (2015)ADSCrossRefGoogle Scholar
  16. 16.
    Zhou, D., Chern, G.-W., Fei, J., Joynt, R.: Topology of entanglement evolution of two qubits. Int. J. Mod. Phys. B 26, 1250054 (2012)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Khvedelidze, A., Rogojin, I.: On the geometric probability of entangled mixed states. J. Math. Sci. 209, 988–1004 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Slater, P.B.: Octonionic two-qubit separability probability conjectures. arXiv preprint arXiv:1612.02798 (2016)
  19. 19.
    Slater, P.B., Dunkl, C.F.: Formulas for rational-valued separability probabilities of random induced generalized two-qubit States. Adv. Math. Phys. 2015, 621353 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Yin, X., He, Y., Ling, C., Tian, L., Cheng, X.: Empirical stochastic modeling of multipath polarizations in indoor propagation scenarios. IEEE Trans. Antennas Propag. 63(12), 5799–5811 (2015)ADSMathSciNetCrossRefGoogle Scholar
  21. 21.
    Życzkowski, K., Penson, K.A., Nechita, I., Collins, B.: Generating random density matrices. J. Math. Phys. 52, 062201 (2011)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Batle, J., Plastino, A.R., Casas, M., Plastino, A.: Understanding quantum entanglement: qubits, rebits and the quaternionic approach. Opt. Spectrosc. 94, 759 (2003)CrossRefGoogle Scholar
  23. 23.
    Singh, R., Kunjwal, R., Simon, R.: Relative volume of separable bipartite states. Phys. Rev. A 89(2), 022308 (2014)ADSCrossRefGoogle Scholar
  24. 24.
    Milz, S., Strunz, W.T.: Volumes of conditioned bipartite state spaces. J. Phys. A 48, 035306 (2015)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Slater, P.B.: Invariance of bipartite separability and PPT-probabilities over Casimir invariants of reduced states. Quantum Inf. Process. 15(9), 3745–3760 (2016)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Slater, P.B.: Two-qubit separability probabilities and beta functions. Phys. Rev. A 75, 032326 (2007)ADSMathSciNetCrossRefGoogle Scholar
  27. 27.
    Bloore, F.: Geometrical description of the convex sets of states for systems with spin-1/2 and spin-1. J. Phys. A: Math. Gen. 9, 2059 (1976)ADSMathSciNetCrossRefGoogle Scholar
  28. 28.
    Andai, A.: Volume of the quantum mechanical state space. J. Phys. A: Math. Gen. 39(44), 13641 (2006)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Bratley, P., Fox, B.L., Niederreiter, H.: Implementation and tests of low-discrepancy sequences. ACM Trans. Model. Comput. Simul. (TOMACS) 2(3), 195–213 (1992)CrossRefzbMATHGoogle Scholar
  30. 30.
    Peres, A.: Separability criterion for density matrices. Phys. Rev. Lett. 77(8), 1413 (1996)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Horodecki, M., Horodecki, P., Horodecki, R.: Separability of mixed states: necessary and sufficient conditions. Phys. Lett. A 223, 1 (1996)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Augusiak, R., Demianowicz, M., Horodecki, P.: Universal observable detecting all two-qubit entanglement and determinant-based separability tests. Phys. Rev. A 77(3), 030301 (2008)ADSCrossRefGoogle Scholar
  33. 33.
    Blumenson, L.E.: A derivation of n-dimensional spherical coordinates. Am. Math. Mon. 67, 63–66 (1960), ISSN 00029890, 19300972.
  34. 34.
    Hildebrand, R.: Semidefinite descriptions of low-dimensional separable matrix cones. Linear Algebra Appl. 429(4), 901–932 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Moore, E.H.: On the determinant of an hermitian matrix of quaternionic elements. Bull. Am. Math. Soc. 28, 161–162 (1922)zbMATHGoogle Scholar
  36. 36.
    Arnold, B.C., Press, S.J.: Compatible conditional distributions. J. Am. Stat. Assoc. 84(405), 152–156 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    Gelman, A., Speed, T.: Characterizing a joint probability distribution by conditionals. J. R. Stat. Soc. B (Methodol) 55, 185–188 (1993)MathSciNetzbMATHGoogle Scholar
  38. 38.
    Osipov, V.A., Sommers, H.-J., Życzkowski, K.: Random Bures mixed states and the distribution of their purity. J. Phys. A 43, 055302 (2010)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  39. 39.
    Mittelbach, M., Matthiesen, B., Jorswieck, E.A.: Sampling uniformly from the set of positive definite matrices with trace constraint. IEEE Trans. Signal Process. 60(5), 2167–2179 (2012)ADSMathSciNetCrossRefGoogle Scholar
  40. 40.
    Wang, M., Ma, W.: A structure-preserving algorithm for the quaternion Cholesky decomposition. Appl. Math. Comput. 223, 354–361 (2013)MathSciNetzbMATHGoogle Scholar
  41. 41.
    Fei, J., Joynt, R.: Numerical computations of separability probabilities. arXiv.1409.1993
  42. 42.
    Mendonça, P., Marchiolli, M.A., Galetti, D.: Entanglement universality of two-qubit X-states. Ann. Phys. 351, 79–103 (2014)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  43. 43.
    Khvedelidze, A., Torosyan, A.: Spectrum and separability of mixed 2-qubit X-states. arXiv preprint arXiv:1609.06209 (2016)
  44. 44.
    Dunkl, C.F., Slater, P.B.: Separability probability formulas and their proofs for generalized two-qubit X-matrices endowed with Hilbert–Schmidt and induced measures. Random Matrices: Theory Appl. 4(04), 1550018 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  45. 45.
    Glöckner, H.: Functions operating on positive semidefinite quaternionic matrices. Monatshefte für Mathematik 132(4), 303–324 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  46. 46.
    Koutschan, C.: A fast approach to creative telescoping. Math. Comput. Sci. 4(2), 259–266 (2010), ISSN 1661-8289.
  47. 47.
    Slater, P.B.: Formulas for generalized two-qubit separability probabilities. arXiv:1609.08561 [quant-ph]
  48. 48.
    Ozawa, M.: Entanglement measures and the Hilbert–Schmidt distance. Phys. Lett. A 268, 158–160 (2000)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  49. 49.
    Dittmann, J.: Explicit formulae for the Bures metric. J. Phys. A: Math. Gen. 32, 2663 (1999)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  50. 50.
    Šafránek, D.: Discontinuities of the quantum Fisher information and the Bures metric. Phys. Rev. A 95(5), 052320 (2017)CrossRefGoogle Scholar
  51. 51.
    Slater, P. B.: Bloch radii repulsion in separable two-qubit systems. arXiv preprint arXiv:1506.08739 (2015)
  52. 52.
    Koutschan, C.: Creative Telescoping for Holonomic Functions. Springer Vienna, Vienna, pp. 171–194, (2013) ISBN 978-3-7091-1616-6.
  53. 53.
    Życzkowski, K., Sommers, H.-J.: Induced measures in the space of mixed quantum states. J. Phys. A 34, 7111–7125 (2001)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  54. 54.
    Bengtsson, I., Życzkowski, K.: Geometry of Quantum States. Cambridge, Cambridge (2006)CrossRefzbMATHGoogle Scholar
  55. 55.
    Slater, P.B.: Eigenvalues, separability and absolute separability of two-qubit states. J. Geom. Phys. 59(1), 17–31 (2009)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  56. 56.
    Hildebrand, R.: Positive partial transpose from spectra. Phys. Rev. A 76, 052325 (2007)ADSMathSciNetCrossRefGoogle Scholar
  57. 57.
    Johnston, N.: Non-positive-partial-transpose subspaces can be as large as any entangled subspace. Phys. Rev. A 87(6), 064302 (2013). ADSCrossRefGoogle Scholar
  58. 58.
    Mendonça, P.E., Marchiolli, M.A., Hedemann, S.R.: Maximally entangled mixed states for qubit-qutrit systems. Phys. Rev. A 95(2), 022324 (2017)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Kavli Institute for Theoretical PhysicsUniversity of CaliforniaSanta BarbaraUSA

Personalised recommendations