Advertisement

Clauser–Horne–Shimony–Holt versus three-party pseudo-telepathy: on the optimal number of samples in device-independent quantum private query

  • Jyotirmoy Basak
  • Subhamoy Maitra
Article

Abstract

In device-independent (DI) paradigm, the trustful assumptions over the devices are removed and CHSH test is performed to check the functionality of the devices toward certifying the security of the protocol. The existing DI protocols consider infinite number of samples from theoretical point of view, though this is not practically implementable. For finite sample analysis of the existing DI protocols, we may also consider strategies for checking device independence other than the CHSH test. In this direction, here we present a comparative analysis between CHSH and three-party Pseudo-telepathy game for the quantum private query protocol in DI paradigm that appeared in Maitra et al. (Phys Rev A 95:042344, 2017) very recently.

Keywords

CHSH Pseudo-telepathy QKD QPQ 

Notes

Acknowledgements

The authors like to acknowledge the reviewers for their detailed comments that substantially improved the technical as well as editorial quality of this paper. The second author likes to acknowledge the grant from the project “Cryptography & Cryptanalysis: How far can we bridge the gap between Classical and Quantum Paradigm,” awarded by the Scientific Research Council of the Department of Atomic Energy (DAE-SRC), the Board of Research in Nuclear Sciences (BRNS).

References

  1. 1.
    Mayers, D., Yao, A.: Self testing quantum apparatus. Quantum Inf. Comput. 4(4), 273–286 (2004)MathSciNetzbMATHGoogle Scholar
  2. 2.
    Cirel’son, B.S.: Quantum generalizations of Bell’s inequality. Lett. Math. Phys. 4(2), 93–100 (1980)ADSMathSciNetCrossRefGoogle Scholar
  3. 3.
    Clauser, J.F., Horne, M.A., Shimony, A., Holt, R.A.: Proposed experiment to test local hidden-variable theories. Phys. Rev. Lett. 23, 880–884 (1969)ADSCrossRefzbMATHGoogle Scholar
  4. 4.
    Maitra, A., Paul, G., Roy, S.: Device-independent quantum private query. Phys. Rev. A 95, 042344 (2017)ADSCrossRefGoogle Scholar
  5. 5.
    Aharon, N., Massar, S., Pironio, S., Silman, J.: Device-independent bit commitment based on the CHSH inequality. New J. Phys. 18(2), 025014 (2016)ADSCrossRefGoogle Scholar
  6. 6.
    Gisin, N., Pironio, S., Sangouard, N.: Proposal for implementing device-independent quantum key distribution based on a heralded qubit amplifier. Phys. Rev. Lett. 105, 070501 (2010)ADSCrossRefGoogle Scholar
  7. 7.
    Yang, Y.G., Sun, S.J., Xu, P., Tiang, J.: Flexible protocol for quantum private query based on B92 protocol. Quantum Inf. Process 13, 805–813 (2014)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Brassard, G., Broadbent, A., Tapp, A.: Quantum pseudo-telepathy. Found. Phys. 35(11), 1877–1907 (2005)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Ekert, A.K.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67, 661 (1991)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Bennett, C.H., Brassard, G., Mermin, N.D.: Quantum cryptography without Bell’s theorem. Phys. Rev. Lett. 68, 557 (1992)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Bennett, C.H., Brassard, G., Popescu, S., Schumacher, B., Smolin, J.A., Wootters, W.K.: Purification of noisy entanglement and faithful teleportation via noisy channels. Phys. Rev. Lett. 76, 722 (1996)ADSCrossRefGoogle Scholar
  12. 12.
    Long, G.L., Liu, X.S.: Theoretically efficient high-capacity quantum-key-distribution scheme. Phys. Rev. A 65, 032302 (2002)ADSCrossRefGoogle Scholar
  13. 13.
    Deng, F.G., Long, G.L., Liu, X.S.: Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block. Phys. Rev. A 68, 042317 (2003)ADSCrossRefGoogle Scholar
  14. 14.
    Ren, B.C., Du, F.F., Deng, F.G.: Hyper-entanglement concentration for two-photon four-qubit systems with linear optics. Phys. Rev. A 88, 012302 (2013)ADSCrossRefGoogle Scholar
  15. 15.
    Long, G.L., Xiao, L.: Parallel quantum computing in a single ensemble quantum computer. Phys. Rev. A 69, 052303 (2004)ADSMathSciNetCrossRefGoogle Scholar
  16. 16.
    Feng, G.R., Xu, G.F., Long, G.L.: Experimental realization of non-adiabatic holonomic quantum computation. Phys. Rev. Lett. 110, 190501 (2013)ADSCrossRefGoogle Scholar
  17. 17.
    Wei, H.R., Deng, F.G.: Universal quantum gates for hybrid systems assisted by quantum dots inside double-sided optical micro-cavities. Phys. Rev. A 87, 022305 (2013)ADSCrossRefGoogle Scholar
  18. 18.
    Li, Z., Long, L.R., Zhou, P., Yin, C.L.: Probabilistic multiparty-controlled teleportation of an arbitrary \(m\)-qubit state with a pure entangled quantum channel against collective noise. Sci. China Ser. G Phys. Mech. Astron. 55, 2445–2451 (2012)ADSCrossRefGoogle Scholar
  19. 19.
    Long, L.R., Li, H.W., Zhou, P., Fan, C., Yin, C.L.: Multiparty-controlled teleportation of an arbitrary GHZ-class state by using a \(d\)-dimensional \((N+2)\)-particle non-maximally entangled state as the quantum channel. Sci. China Ser. G Phys. Mech. Astron. 54, 484–490 (2011)ADSCrossRefGoogle Scholar
  20. 20.
    Lv, S.X., Zhao, Z.W., Zhou, P.: Joint remote control of an arbitrary single-qubit state by using a multi-particle entangled state as the quantum channel. Quantum Inf. Process. 17, 8 (2018)ADSCrossRefGoogle Scholar
  21. 21.
    Yu, R.F., Lin, Y.J., Zhou, P.: Joint remote preparation of arbitrary two- and three-photon state with linear-optical elements. Quantum Inf. Process. 15, 4785 (2016)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Brassard, G., Broadbent, A., Tapp, A.: Multi-party pseudo-telepathy. Springer, Berlin (2003)CrossRefzbMATHGoogle Scholar
  23. 23.
    Hoeffding, W.: Probability Inequalities for sums of bounded random variables. J Am Stat Assoc 58(301), 13–30 (1963)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. In: Proceedings of the IEEE International Conference on Computers, Systems and Signal Processing, Bangalore, India, pp. 10–12 (1984)Google Scholar
  25. 25.
    Mancinska, L.: Maximally entangled state in pseudo-telepathy games. In: Calude, C.S., Freivalds, R., Iwama, K. (eds.) Computing with new resources. Lecture Notes in Computer Science, vol. 8808, pp. 200–207 (2014)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Applied Statistics UnitIndian Statistical InstituteKolkataIndia

Personalised recommendations