Advertisement

Time-optimal control with finite bandwidth

  • M. Hirose
  • P. Cappellaro
Article
  • 122 Downloads

Abstract

Time-optimal control theory provides recipes to achieve quantum operations with high fidelity and speed, as required in quantum technologies such as quantum sensing and computation. While technical advances have achieved the ultrastrong driving regime in many physical systems, these capabilities have yet to be fully exploited for the precise control of quantum systems, as other limitations, such as the generation of higher harmonics or the finite response time of the control apparatus, prevent the implementation of theoretical time-optimal control. Here we present a method to achieve time-optimal control of qubit systems that can take advantage of fast driving beyond the rotating wave approximation. We exploit results from time-optimal control theory to design driving protocols that can be implemented with realistic, finite-bandwidth control fields, and we find a relationship between bandwidth limitations and achievable control fidelity.

Keywords

Time-optimal control Quantum control Quantum information processing 

Notes

Acknowledgements

This work was supported in part by the U.S. AFOSR Grant No. FA9550-12-1-0292 and by NSF Grant EECS1702716.

Supplementary material

References

  1. 1.
    Deffner, S., Campbell, S.: Quantum speed limits: from Heisenberg’s uncertainty principle to optimal quantum control. J. Phys. A 50, 453001 (2017)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Deffner, S., Lutz, E.: Energy-time uncertainty relation for driven quantum systems. J. Phys. A 46(33), 335302 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Salamon, P., Hoffmann, K.H., Rezek, Y., Kosloff, R.: Maximum work in minimum time from a conservative quantum system. Phys. Chem. Chem. Phys. 11(7), 1027–1032 (2009)CrossRefGoogle Scholar
  4. 4.
    Hegerfeldt, G.C.: Driving at the quantum speed limit: optimal control of a two-level system. Phys. Rev. Lett. 111, 260501 (2013)ADSCrossRefGoogle Scholar
  5. 5.
    Barnes, E.: Analytically solvable two-level quantum systems and landau-zener interferometry. Phys. Rev. A 88, 013818 (2013)ADSCrossRefGoogle Scholar
  6. 6.
    del Campo, A., Egusquiza, I.L., Plenio, M.B., Huelga, S.F.: Quantum speed limits in open system dynamics. Phys. Rev. Lett. 110, 050403 (2013)CrossRefGoogle Scholar
  7. 7.
    Taddei, M.M., Escher, B.M., Davidovich, L., de Matos, R.L.: Quantum speed limit for physical processes. Phys. Rev. Lett. 110, 050402 (2013)ADSCrossRefGoogle Scholar
  8. 8.
    Deffner, S., Lutz, E.: Quantum speed limit for non-Markovian dynamics. Phys. Rev. Lett. 111, 010402 (2013)ADSCrossRefGoogle Scholar
  9. 9.
    Bason, M.G., Viteau, M., Malossi, N., Huillery, P., Arimondo, E., Ciampini, D., Fazio, R., Giovannetti, V., Mannella, R., Morsch, O.: High-fidelity quantum driving. Nat. Phys. 8(2), 147–152 (2012)CrossRefGoogle Scholar
  10. 10.
    Hofferberth, S., Fischer, B., Schumm, T., Schmiedmayer, J., Lesanovsky, I.: Ultracold atoms in radio-frequency dressed potentials beyond the rotating-wave approximation. Phys. Rev. A 76, 013401 (2007)ADSCrossRefGoogle Scholar
  11. 11.
    Jiménez-García, K., LeBlanc, L.J., Williams, R.A., Beeler, M.C., Qu, C., Gong, M., Zhang, C., Spielman, I.B.: Tunable spin-orbit coupling via strong driving in ultracold-atom systems. Phys. Rev. Lett. 114, 125301 (2015)ADSCrossRefGoogle Scholar
  12. 12.
    Zaks, B., Stehr, D., Truong, T.-A., Petroff, P., Hughes, S., Sherwin, M.S.: Thz-driven quantum wells: Coulomb interactions and stark shifts in the ultrastrong coupling regime. New J. Phys. 13(8), 083009 (2011)ADSCrossRefGoogle Scholar
  13. 13.
    Deng, C., Orgiazzi, J.-L., Shen, F., Ashhab, S., Lupascu, A.: Observation of Floquet states in a strongly driven artificial atom. Phys. Rev. Lett. 115, 133601 (2015)ADSCrossRefGoogle Scholar
  14. 14.
    Ashhab, S., Johansson, J.R., Zagoskin, A.M., Nori, F.: Two-level systems driven by large-amplitude fields. Phys. Rev. A 75, 063414 (2007)ADSCrossRefGoogle Scholar
  15. 15.
    Rudner, M.S., Shytov, A.V., Levitov, L.S., Berns, D.M., Oliver, W.D., Valenzuela, S.O., Orlando, T.P.: Quantum phase tomography of a strongly driven qubit. Phys. Rev. Lett. 101, 190502 (2008)ADSCrossRefGoogle Scholar
  16. 16.
    Oliver, W.D., Valenzuela, S.O.: Large-amplitude driving of a superconducting artificial atom. Quantum Inf. Process. 8(2–3), 261–281 (2009)CrossRefGoogle Scholar
  17. 17.
    Niemczyk, T., Deppe, F., Huebl, H., Menzel, E.P., Hocke, F., Schwarz, M.J., Garcia-Ripoll, J.J., Zueco, D., Hummer, T., Solano, E., Marx, A., Gross, R.: Circuit quantum electrodynamics in the ultrastrong-coupling regime. Nat. Phys. 6(10), 772–776 (2010)CrossRefGoogle Scholar
  18. 18.
    Barfuss, A., Teissier, J., Neu, E., Nunnenkamp, A., Maletinsky, P.: Strong mechanical driving of a single electron spin. Nat. Phys. 11(10), 820–824 (2015)CrossRefGoogle Scholar
  19. 19.
    Stefanatos, D.: Fast cavity optomechanical cooling. Automatica 73, 71–75 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Fuchs, G.D., Dobrovitski, V.V., Toyli, D.M., Heremans, F.J., Awschalom, D.D.: Gigahertz dynamics of a strongly driven single quantum spin. Science 326(5959), 1520–1522 (2009)ADSCrossRefGoogle Scholar
  21. 21.
    Childress, L., McIntyre, J.: Multifrequency spin resonance in diamond. Phys. Rev. A 82, 033839 (2010)ADSCrossRefGoogle Scholar
  22. 22.
    Scheuer, J., Kong, X., Said, R.S., Chen, J., Kurz, A., Marseglia, L., Du, J., Hemmer, P.R., Montangero, S., Calarco, T., Naydenov, B., Jelezko, F.: Precise qubit control beyond the rotating wave approximation. New J. Phys. 16(9), 093022 (2014)ADSCrossRefGoogle Scholar
  23. 23.
    Margolus, N., Levitin, L.B.: The maximum speed of dynamical evolution. Phys. D 120(1–2), 188–195 (1998)CrossRefGoogle Scholar
  24. 24.
    Carlini, A., Hosoya, A., Koike, T., Okudaira, Y.: Time-optimal quantum evolution. Phys. Rev. Lett. 96, 060503 (2006)ADSCrossRefzbMATHGoogle Scholar
  25. 25.
    Giovannetti, V., Lloyd, S., Maccone, L.: Quantum limits to dynamical evolution. Phys. Rev. A 67, 052109 (2003)ADSCrossRefGoogle Scholar
  26. 26.
    Caneva, T., Murphy, M., Calarco, T., Fazio, R., Montangero, S., Giovannetti, V., Santoro, G.E.: Optimal control at the quantum speed limit. Phys. Rev. Lett. 103(24), 240501 (2009)ADSCrossRefGoogle Scholar
  27. 27.
    Boscain, U., Charlot, G., Gauthier, J.-P., Guerin, S., Jauslin, H.-R.: Optimal control in laser-induced population transfer for two- and three-level quantum systems. J. Math. Phys. 43(5), 2107–2132 (2002)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    D’Alessandro, D., Dahleh, M.: Optimal control of two-level quantum systems. IEEE Trans. Autom. Control 46(6), 866–876 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Albertini, F., D’Alessandro, D.: Minimum time optimal synthesis for two level quantum systems. J. Math. Phys. 56(1), 012106 (2015)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    London, P., Balasubramanian, P., Naydenov, B., McGuinness, L.P., Jelezko, F.: Strong driving of a single spin using arbitrarily polarized fields. Phys. Rev. A 90, 012302 (2014)ADSCrossRefGoogle Scholar
  31. 31.
    Shim, J.H., Lee, S.-J., Yu, K.-K., Hwang, S.-M., Kim, K.: Strong pulsed excitations using circularly polarized fields for ultra-low field nmr. J. Mag. Res. 239, 87–90 (2014)ADSCrossRefGoogle Scholar
  32. 32.
    Boscain, U., Mason, P.: Time minimal trajectories for a spin 1/2 particle in a magnetic field. J. Math. Phys. 47(6), 062101 (2006)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Billig, Y.: Time-optimal decompositions in su(2). Quantum Inf. Process. 12(2), 955–971 (2013)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Aiello, C.D., Allegra, M., Hemmerling, B., Wan, X., Cappellaro, P.: Algebraic synthesis of time-optimal unitaries in SU(2) with alternating controls. Quantum Inf Process 14(9), 3233–3256 (2015)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Billig, Y.: Optimal attitude control with two rotation axes. ArXiv:1409.3102, September (2014)
  36. 36.
    Avinadav, C., Fischer, R., London, P., Gershoni, D.: Time-optimal universal control of two-level systems under strong driving. Phys. Rev. B 89, 245311 (2014)ADSCrossRefGoogle Scholar
  37. 37.
    Barbara, T.M., Martin, J.F., Wurl, J.G.: Phase transients in NMR probe circuits. J. Mag. Res. 93(3), 497–508 (1991)ADSGoogle Scholar
  38. 38.
    Borneman, T.W., Cory, D.G.: Bandwidth-limited control and ringdown suppression in high-q resonators. J. Mag. Res. 225, 120–129 (2012)ADSCrossRefGoogle Scholar
  39. 39.
    Tibbetts, K.W.M., Brif, C., Grace, M.D., Donovan, A., Hocker, D.L., Ho, T.-S., Wu, R.-B., Rabitz, H.: Exploring the tradeoff between fidelity and time optimal control of quantum unitary transformations. Phys. Rev. A 86, 062309 (2012)ADSCrossRefGoogle Scholar
  40. 40.
    Pontryagin, L.S.: Mathematical Theory of Optimal Processes. Taylor & Francis, Milton Park (1987)zbMATHGoogle Scholar
  41. 41.
    Garon, A., Glaser, S.J., Sugny, D.: Time-optimal control of SU(2) quantum operations. Phys. Rev. A 88, 043422 (2013)ADSCrossRefGoogle Scholar
  42. 42.
    Lloyd, S., Montangero, S.: Information theoretical analysis of quantum optimal control. Phys. Rev. Lett. 113, 010502 (2014)ADSCrossRefGoogle Scholar
  43. 43.
    Moore, K., Hsieh, M., Rabitz, H.: On the relationship between quantum control landscape structure and optimization complexity. J. Chem. Phys. 128(15), 154117 (2008)ADSCrossRefGoogle Scholar
  44. 44.
    Moore, K.W., Rabitz, H.: Exploring constrained quantum control landscapes. J. Chem. Phys. 137(13), 134113 (2012)ADSCrossRefGoogle Scholar
  45. 45.
    Rach, N., Müller, M.M., Calarco, T., Montangero, S.: Dressing the chopped-random-basis optimization: a bandwidth-limited access to the trap-free landscape. Phys. Rev. A 92, 062343 (2015)ADSCrossRefGoogle Scholar
  46. 46.
    Aiello, C.D., Cappellaro, P.: Time-optimal control by a quantum actuator. Phys. Rev. A 91, 042340 (2015)ADSCrossRefGoogle Scholar
  47. 47.
    Gibbs, J.W.: Fourier’s series. Nature 59, 200 (1898)ADSCrossRefzbMATHGoogle Scholar
  48. 48.
    Nielsen, M.A.: A simple formula for the average gate fidelity of a quantum dynamical operation. Phys. Lett. A 303, 249 (2002)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  49. 49.
    Gottesman, D.: Theory of fault-tolerant quantum computation. Phys. Rev. A 57(1), 127–137 (1998)ADSMathSciNetCrossRefGoogle Scholar
  50. 50.
    Kallush, S., Khasin, M., Kosloff, R.: Quantum control with noisy fields: computational complexity versus sensitivity to noise. N. J. Phys. 16(1), 015008 (2014)CrossRefGoogle Scholar
  51. 51.
    Romano, R., D’Alessandro, D.: Minimum time control of a pair of two-level quantum systems with opposite drifts. J. Phys. Math. Gen. 49, 345303 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  52. 52.
    Khaneja, N., Brockett, R., Glaser, S.J.: Time optimal control in spin systems. Phys. Rev. A 63, 032308 (2001)ADSCrossRefGoogle Scholar
  53. 53.
    Lapert, M., Zhang, Y., Braun, M., Glaser, S.J., Sugny, D.: Singular extremals for the time-optimal control of dissipative spin \(\frac{1}{2}\) particles. Phys. Rev. Lett. 104, 083001 (2010)ADSCrossRefGoogle Scholar
  54. 54.
    Sugny, D., Kontz, C., Jauslin, H.R.: Time-optimal control of a two-level dissipative quantum system. Phys. Rev. A 76, 023419 (2007)ADSCrossRefGoogle Scholar
  55. 55.
    Van Damme, L., Zeier, R., Glaser, S.J., Sugny, D.: Application of the pontryagin maximum principle to the time-optimal control in a chain of three spins with unequal couplings. Phys. Rev. A 90, 013409 (2014)ADSCrossRefGoogle Scholar
  56. 56.
    Chambrion, T., Mason, P., Sigalotti, M., Boscain, U.: Controllability of the discrete-spectrum schroedinger equation driven by an external field. Annales de l’Institut Henri Poincare (C) Non Linear. Analysis 26(1), 329–349 (2009)zbMATHGoogle Scholar
  57. 57.
    Yuan, H., Glaser, S.J., Khaneja, N.: Geodesics for efficient creation and propagation of order along ising spin chains. Phys. Rev. A 76(1), 012316 (2007)ADSCrossRefGoogle Scholar
  58. 58.
    Yuan, H., Khaneja, N.: Efficient synthesis of quantum gates on a three-spin system with triangle topology. Phys. Rev. A 84, 062301 (2011)ADSCrossRefGoogle Scholar
  59. 59.
    Motzoi, F., Gambetta, J.M., Merkel, S.T., Wilhelm, F.K.: Optimal control methods for rapidly time-varying hamiltonians. Phys. Rev. A 84, 022307 (2011)ADSCrossRefGoogle Scholar
  60. 60.
    Bartels, B., Mintert, F.: Smooth optimal control with floquet theory. Phys. Rev. A 88, 052315 (2013)ADSCrossRefGoogle Scholar
  61. 61.
    Caneva, T., Calarco, T., Montangero, S.: Chopped random-basis quantum optimization. Phys. Rev. A 84, 022326 (2011)ADSCrossRefGoogle Scholar
  62. 62.
    Doria, P., Calarco, T., Montangero, S.: Optimal control technique for many-body quantum dynamics. Phys. Rev. Lett. 106, 190501 (2011)ADSCrossRefGoogle Scholar
  63. 63.
    Assémat, E., Lapert, M., Zhang, Y., Braun, M., Glaser, S.J., Sugny, D.: Simultaneous time-optimal control of the inversion of two spin-\(\frac{1}{2}\) particles. Phys. Rev. A 82, 013415 (2010)ADSCrossRefGoogle Scholar
  64. 64.
    Burgarth, D., Maruyama, K., Murphy, M., Montangero, S., Calarco, T., Nori, F., Plenio, M.B.: Scalable quantum computation via local control of only two qubits. Phys. Rev. A 81(4), 040303 (2010)ADSCrossRefzbMATHGoogle Scholar
  65. 65.
    Romano, R.: Geometric analysis of minimum-time trajectories for a two-level quantum system. Phys. Rev. A 90, 062302 (2014)ADSCrossRefGoogle Scholar
  66. 66.
    Ashhab, S., de Groot, P.C., Nori, F.: Speed limits for quantum gates in multiqubit systems. Phys. Rev. A 85, 052327 (2012)ADSCrossRefGoogle Scholar
  67. 67.
    Machnes, S., Tannor, D.J., Wilhelm, F.K., Assemat, E.: Gradient optimization of analytic controls: the route to high accuracy quantum optimal control (2015). ArXiv:1507.04261
  68. 68.
    Boscain, U., Chitour, Y.: Time-optimal synthesis for left-invariant control systems on \(so(3)\). SIAM J. Control Optim. 44, 111 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  69. 69.
    Boscain, U., Groenberg, F., Long, R., Rabitz, H.: Minimal time trajectories for two-level quantum systems with two bounded controls. J. Math. Phys. 55(6), 062106 (2014)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  70. 70.
    Piovan, G., Bullo, F.: On coordinate-free rotation decomposition: Euler angles about arbitrary axes. IEEE Trans. Robot. 28(3), 728–733 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Nuclear Science and Engineering and Research Laboratory of ElectronicsMassachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations