Skip to main content
Log in

Time-optimal control with finite bandwidth

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Time-optimal control theory provides recipes to achieve quantum operations with high fidelity and speed, as required in quantum technologies such as quantum sensing and computation. While technical advances have achieved the ultrastrong driving regime in many physical systems, these capabilities have yet to be fully exploited for the precise control of quantum systems, as other limitations, such as the generation of higher harmonics or the finite response time of the control apparatus, prevent the implementation of theoretical time-optimal control. Here we present a method to achieve time-optimal control of qubit systems that can take advantage of fast driving beyond the rotating wave approximation. We exploit results from time-optimal control theory to design driving protocols that can be implemented with realistic, finite-bandwidth control fields, and we find a relationship between bandwidth limitations and achievable control fidelity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. Infinite decompositions are also possible. However, here an infinite sequence with equal times is a rotation about \(\sigma _z\); thus, an infinite decomposition can be speedily obtained by a singular control (setting \(\varOmega =0\)).

References

  1. Deffner, S., Campbell, S.: Quantum speed limits: from Heisenberg’s uncertainty principle to optimal quantum control. J. Phys. A 50, 453001 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Deffner, S., Lutz, E.: Energy-time uncertainty relation for driven quantum systems. J. Phys. A 46(33), 335302 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  3. Salamon, P., Hoffmann, K.H., Rezek, Y., Kosloff, R.: Maximum work in minimum time from a conservative quantum system. Phys. Chem. Chem. Phys. 11(7), 1027–1032 (2009)

    Article  Google Scholar 

  4. Hegerfeldt, G.C.: Driving at the quantum speed limit: optimal control of a two-level system. Phys. Rev. Lett. 111, 260501 (2013)

    Article  ADS  Google Scholar 

  5. Barnes, E.: Analytically solvable two-level quantum systems and landau-zener interferometry. Phys. Rev. A 88, 013818 (2013)

    Article  ADS  Google Scholar 

  6. del Campo, A., Egusquiza, I.L., Plenio, M.B., Huelga, S.F.: Quantum speed limits in open system dynamics. Phys. Rev. Lett. 110, 050403 (2013)

    Article  Google Scholar 

  7. Taddei, M.M., Escher, B.M., Davidovich, L., de Matos, R.L.: Quantum speed limit for physical processes. Phys. Rev. Lett. 110, 050402 (2013)

    Article  ADS  Google Scholar 

  8. Deffner, S., Lutz, E.: Quantum speed limit for non-Markovian dynamics. Phys. Rev. Lett. 111, 010402 (2013)

    Article  ADS  Google Scholar 

  9. Bason, M.G., Viteau, M., Malossi, N., Huillery, P., Arimondo, E., Ciampini, D., Fazio, R., Giovannetti, V., Mannella, R., Morsch, O.: High-fidelity quantum driving. Nat. Phys. 8(2), 147–152 (2012)

    Article  Google Scholar 

  10. Hofferberth, S., Fischer, B., Schumm, T., Schmiedmayer, J., Lesanovsky, I.: Ultracold atoms in radio-frequency dressed potentials beyond the rotating-wave approximation. Phys. Rev. A 76, 013401 (2007)

    Article  ADS  Google Scholar 

  11. Jiménez-García, K., LeBlanc, L.J., Williams, R.A., Beeler, M.C., Qu, C., Gong, M., Zhang, C., Spielman, I.B.: Tunable spin-orbit coupling via strong driving in ultracold-atom systems. Phys. Rev. Lett. 114, 125301 (2015)

    Article  ADS  Google Scholar 

  12. Zaks, B., Stehr, D., Truong, T.-A., Petroff, P., Hughes, S., Sherwin, M.S.: Thz-driven quantum wells: Coulomb interactions and stark shifts in the ultrastrong coupling regime. New J. Phys. 13(8), 083009 (2011)

    Article  ADS  Google Scholar 

  13. Deng, C., Orgiazzi, J.-L., Shen, F., Ashhab, S., Lupascu, A.: Observation of Floquet states in a strongly driven artificial atom. Phys. Rev. Lett. 115, 133601 (2015)

    Article  ADS  Google Scholar 

  14. Ashhab, S., Johansson, J.R., Zagoskin, A.M., Nori, F.: Two-level systems driven by large-amplitude fields. Phys. Rev. A 75, 063414 (2007)

    Article  ADS  Google Scholar 

  15. Rudner, M.S., Shytov, A.V., Levitov, L.S., Berns, D.M., Oliver, W.D., Valenzuela, S.O., Orlando, T.P.: Quantum phase tomography of a strongly driven qubit. Phys. Rev. Lett. 101, 190502 (2008)

    Article  ADS  Google Scholar 

  16. Oliver, W.D., Valenzuela, S.O.: Large-amplitude driving of a superconducting artificial atom. Quantum Inf. Process. 8(2–3), 261–281 (2009)

    Article  Google Scholar 

  17. Niemczyk, T., Deppe, F., Huebl, H., Menzel, E.P., Hocke, F., Schwarz, M.J., Garcia-Ripoll, J.J., Zueco, D., Hummer, T., Solano, E., Marx, A., Gross, R.: Circuit quantum electrodynamics in the ultrastrong-coupling regime. Nat. Phys. 6(10), 772–776 (2010)

    Article  Google Scholar 

  18. Barfuss, A., Teissier, J., Neu, E., Nunnenkamp, A., Maletinsky, P.: Strong mechanical driving of a single electron spin. Nat. Phys. 11(10), 820–824 (2015)

    Article  Google Scholar 

  19. Stefanatos, D.: Fast cavity optomechanical cooling. Automatica 73, 71–75 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  20. Fuchs, G.D., Dobrovitski, V.V., Toyli, D.M., Heremans, F.J., Awschalom, D.D.: Gigahertz dynamics of a strongly driven single quantum spin. Science 326(5959), 1520–1522 (2009)

    Article  ADS  Google Scholar 

  21. Childress, L., McIntyre, J.: Multifrequency spin resonance in diamond. Phys. Rev. A 82, 033839 (2010)

    Article  ADS  Google Scholar 

  22. Scheuer, J., Kong, X., Said, R.S., Chen, J., Kurz, A., Marseglia, L., Du, J., Hemmer, P.R., Montangero, S., Calarco, T., Naydenov, B., Jelezko, F.: Precise qubit control beyond the rotating wave approximation. New J. Phys. 16(9), 093022 (2014)

    Article  ADS  Google Scholar 

  23. Margolus, N., Levitin, L.B.: The maximum speed of dynamical evolution. Phys. D 120(1–2), 188–195 (1998)

    Article  Google Scholar 

  24. Carlini, A., Hosoya, A., Koike, T., Okudaira, Y.: Time-optimal quantum evolution. Phys. Rev. Lett. 96, 060503 (2006)

    Article  ADS  MATH  Google Scholar 

  25. Giovannetti, V., Lloyd, S., Maccone, L.: Quantum limits to dynamical evolution. Phys. Rev. A 67, 052109 (2003)

    Article  ADS  Google Scholar 

  26. Caneva, T., Murphy, M., Calarco, T., Fazio, R., Montangero, S., Giovannetti, V., Santoro, G.E.: Optimal control at the quantum speed limit. Phys. Rev. Lett. 103(24), 240501 (2009)

    Article  ADS  Google Scholar 

  27. Boscain, U., Charlot, G., Gauthier, J.-P., Guerin, S., Jauslin, H.-R.: Optimal control in laser-induced population transfer for two- and three-level quantum systems. J. Math. Phys. 43(5), 2107–2132 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. D’Alessandro, D., Dahleh, M.: Optimal control of two-level quantum systems. IEEE Trans. Autom. Control 46(6), 866–876 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  29. Albertini, F., D’Alessandro, D.: Minimum time optimal synthesis for two level quantum systems. J. Math. Phys. 56(1), 012106 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. London, P., Balasubramanian, P., Naydenov, B., McGuinness, L.P., Jelezko, F.: Strong driving of a single spin using arbitrarily polarized fields. Phys. Rev. A 90, 012302 (2014)

    Article  ADS  Google Scholar 

  31. Shim, J.H., Lee, S.-J., Yu, K.-K., Hwang, S.-M., Kim, K.: Strong pulsed excitations using circularly polarized fields for ultra-low field nmr. J. Mag. Res. 239, 87–90 (2014)

    Article  ADS  Google Scholar 

  32. Boscain, U., Mason, P.: Time minimal trajectories for a spin 1/2 particle in a magnetic field. J. Math. Phys. 47(6), 062101 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. Billig, Y.: Time-optimal decompositions in su(2). Quantum Inf. Process. 12(2), 955–971 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. Aiello, C.D., Allegra, M., Hemmerling, B., Wan, X., Cappellaro, P.: Algebraic synthesis of time-optimal unitaries in SU(2) with alternating controls. Quantum Inf Process 14(9), 3233–3256 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  35. Billig, Y.: Optimal attitude control with two rotation axes. ArXiv:1409.3102, September (2014)

  36. Avinadav, C., Fischer, R., London, P., Gershoni, D.: Time-optimal universal control of two-level systems under strong driving. Phys. Rev. B 89, 245311 (2014)

    Article  ADS  Google Scholar 

  37. Barbara, T.M., Martin, J.F., Wurl, J.G.: Phase transients in NMR probe circuits. J. Mag. Res. 93(3), 497–508 (1991)

    ADS  Google Scholar 

  38. Borneman, T.W., Cory, D.G.: Bandwidth-limited control and ringdown suppression in high-q resonators. J. Mag. Res. 225, 120–129 (2012)

    Article  ADS  Google Scholar 

  39. Tibbetts, K.W.M., Brif, C., Grace, M.D., Donovan, A., Hocker, D.L., Ho, T.-S., Wu, R.-B., Rabitz, H.: Exploring the tradeoff between fidelity and time optimal control of quantum unitary transformations. Phys. Rev. A 86, 062309 (2012)

    Article  ADS  Google Scholar 

  40. Pontryagin, L.S.: Mathematical Theory of Optimal Processes. Taylor & Francis, Milton Park (1987)

    MATH  Google Scholar 

  41. Garon, A., Glaser, S.J., Sugny, D.: Time-optimal control of SU(2) quantum operations. Phys. Rev. A 88, 043422 (2013)

    Article  ADS  Google Scholar 

  42. Lloyd, S., Montangero, S.: Information theoretical analysis of quantum optimal control. Phys. Rev. Lett. 113, 010502 (2014)

    Article  ADS  Google Scholar 

  43. Moore, K., Hsieh, M., Rabitz, H.: On the relationship between quantum control landscape structure and optimization complexity. J. Chem. Phys. 128(15), 154117 (2008)

    Article  ADS  Google Scholar 

  44. Moore, K.W., Rabitz, H.: Exploring constrained quantum control landscapes. J. Chem. Phys. 137(13), 134113 (2012)

    Article  ADS  Google Scholar 

  45. Rach, N., Müller, M.M., Calarco, T., Montangero, S.: Dressing the chopped-random-basis optimization: a bandwidth-limited access to the trap-free landscape. Phys. Rev. A 92, 062343 (2015)

    Article  ADS  Google Scholar 

  46. Aiello, C.D., Cappellaro, P.: Time-optimal control by a quantum actuator. Phys. Rev. A 91, 042340 (2015)

    Article  ADS  Google Scholar 

  47. Gibbs, J.W.: Fourier’s series. Nature 59, 200 (1898)

    Article  ADS  MATH  Google Scholar 

  48. Nielsen, M.A.: A simple formula for the average gate fidelity of a quantum dynamical operation. Phys. Lett. A 303, 249 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  49. Gottesman, D.: Theory of fault-tolerant quantum computation. Phys. Rev. A 57(1), 127–137 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  50. Kallush, S., Khasin, M., Kosloff, R.: Quantum control with noisy fields: computational complexity versus sensitivity to noise. N. J. Phys. 16(1), 015008 (2014)

    Article  Google Scholar 

  51. Romano, R., D’Alessandro, D.: Minimum time control of a pair of two-level quantum systems with opposite drifts. J. Phys. Math. Gen. 49, 345303 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  52. Khaneja, N., Brockett, R., Glaser, S.J.: Time optimal control in spin systems. Phys. Rev. A 63, 032308 (2001)

    Article  ADS  Google Scholar 

  53. Lapert, M., Zhang, Y., Braun, M., Glaser, S.J., Sugny, D.: Singular extremals for the time-optimal control of dissipative spin \(\frac{1}{2}\) particles. Phys. Rev. Lett. 104, 083001 (2010)

    Article  ADS  Google Scholar 

  54. Sugny, D., Kontz, C., Jauslin, H.R.: Time-optimal control of a two-level dissipative quantum system. Phys. Rev. A 76, 023419 (2007)

    Article  ADS  Google Scholar 

  55. Van Damme, L., Zeier, R., Glaser, S.J., Sugny, D.: Application of the pontryagin maximum principle to the time-optimal control in a chain of three spins with unequal couplings. Phys. Rev. A 90, 013409 (2014)

    Article  ADS  Google Scholar 

  56. Chambrion, T., Mason, P., Sigalotti, M., Boscain, U.: Controllability of the discrete-spectrum schroedinger equation driven by an external field. Annales de l’Institut Henri Poincare (C) Non Linear. Analysis 26(1), 329–349 (2009)

    MATH  Google Scholar 

  57. Yuan, H., Glaser, S.J., Khaneja, N.: Geodesics for efficient creation and propagation of order along ising spin chains. Phys. Rev. A 76(1), 012316 (2007)

    Article  ADS  Google Scholar 

  58. Yuan, H., Khaneja, N.: Efficient synthesis of quantum gates on a three-spin system with triangle topology. Phys. Rev. A 84, 062301 (2011)

    Article  ADS  Google Scholar 

  59. Motzoi, F., Gambetta, J.M., Merkel, S.T., Wilhelm, F.K.: Optimal control methods for rapidly time-varying hamiltonians. Phys. Rev. A 84, 022307 (2011)

    Article  ADS  Google Scholar 

  60. Bartels, B., Mintert, F.: Smooth optimal control with floquet theory. Phys. Rev. A 88, 052315 (2013)

    Article  ADS  Google Scholar 

  61. Caneva, T., Calarco, T., Montangero, S.: Chopped random-basis quantum optimization. Phys. Rev. A 84, 022326 (2011)

    Article  ADS  Google Scholar 

  62. Doria, P., Calarco, T., Montangero, S.: Optimal control technique for many-body quantum dynamics. Phys. Rev. Lett. 106, 190501 (2011)

    Article  ADS  Google Scholar 

  63. Assémat, E., Lapert, M., Zhang, Y., Braun, M., Glaser, S.J., Sugny, D.: Simultaneous time-optimal control of the inversion of two spin-\(\frac{1}{2}\) particles. Phys. Rev. A 82, 013415 (2010)

    Article  ADS  Google Scholar 

  64. Burgarth, D., Maruyama, K., Murphy, M., Montangero, S., Calarco, T., Nori, F., Plenio, M.B.: Scalable quantum computation via local control of only two qubits. Phys. Rev. A 81(4), 040303 (2010)

    Article  ADS  MATH  Google Scholar 

  65. Romano, R.: Geometric analysis of minimum-time trajectories for a two-level quantum system. Phys. Rev. A 90, 062302 (2014)

    Article  ADS  Google Scholar 

  66. Ashhab, S., de Groot, P.C., Nori, F.: Speed limits for quantum gates in multiqubit systems. Phys. Rev. A 85, 052327 (2012)

    Article  ADS  Google Scholar 

  67. Machnes, S., Tannor, D.J., Wilhelm, F.K., Assemat, E.: Gradient optimization of analytic controls: the route to high accuracy quantum optimal control (2015). ArXiv:1507.04261

  68. Boscain, U., Chitour, Y.: Time-optimal synthesis for left-invariant control systems on \(so(3)\). SIAM J. Control Optim. 44, 111 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  69. Boscain, U., Groenberg, F., Long, R., Rabitz, H.: Minimal time trajectories for two-level quantum systems with two bounded controls. J. Math. Phys. 55(6), 062106 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  70. Piovan, G., Bullo, F.: On coordinate-free rotation decomposition: Euler angles about arbitrary axes. IEEE Trans. Robot. 28(3), 728–733 (2012)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the U.S. AFOSR Grant No. FA9550-12-1-0292 and by NSF Grant EECS1702716.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Cappellaro.

Appendices

Time-optimal bang–bang control

Bang–bang control has been shown to achieve time-optimal control of two-level systems. General bounds and prescriptions for the time-optimal bang–bang control have been provided [29, 32,33,34, 51, 68, 69]. These results can be used to numerically obtain a solution to the time-optimal problem with BB control for a general unitary. However, for some target unitaries and Hamiltonian parameters it is possible to find analytical solutions. In the main text we focused on these cases since they allow to more easily study trends in the fidelity and robustness of the FATO control strategy. Here we describe how, exploiting known results in BB control, we obtained the specific TO solutions for the two gates and two driving strength regimes considered.

The general goal is to find the optimal times such that a sequence of “bangs” under alternating Hamiltonian \({\mathcal {H}}_{\pm ,0}\) can achieve the desired unitary. Simple algebraic arguments [33] impose constraints on the middle times of any TO decomposition. Then the TO problem reduces to finding three times, \(t_i, t_m\) and \(t_f\), such that concatenating the unitaries \(U_{0,\pm }(t)=e^{-it{\mathcal {H}}_{0,\pm }}\) achieves the two desired gates, \(\sigma _x\) and \(\sigma _y\). Since we focused on achieving \(\pi \) rotations, we can apply (in addition to results found in [33,34,35]) the results of [32] relating to a north-to-south pole transformation only. Their constraints still need to be valid sufficient conditions (although not necessary) for the TO unitary.

1.1 Weak driving

For weak driving, it was found in [32] that there should be no singular bangs in the TO solution. In addition, for \(\alpha =\pi /2n\) the solution \(U_{NS}\) for the north-to-south transition is obtained as

$$\begin{aligned} U_{NS}=[U_+(\pi )U_-(\pi )]^n \end{aligned}$$
(7)

We find that if n is even, \(U_{NS}=\sigma _y\), while if n is odd \(U_{NS}=\sigma _x\). Ref. [32] allowed for a second type of solution, with \(n+1\) bangs. These are candidates solutions for \(\sigma _y\) if n is odd and \(\sigma _x\) if n is even. While it is possible to find analytical solutions for the optimal times in these cases as well, the expressions become more involved and thus we limited our extended analysis in the main text to the simplest case.

We note that even for X rotations we consider an even number \(n+1\) of bangs to build the FATO approximation. This ensures that the function f(t) is odd, yielding a sine Fourier series which is zero at \(t=0\) for any bandwidth.

1.2 Ultrastrong Driving

The strong driving occurs when \(\vartheta >\pi /4\). In this case, following [32] and [34], we find that the TO solution is composed of at most three bangs. It is then easy to find analytical solutions for the times \(\{t_i, t_m, t_f\}\), for example by following the construction described in [70].

We can first verify that two bangs are not enough to generate the desired rotations. Defining \(\mathbf {v}_{\pm ,0}\) the vectors corresponding to the Hamiltonians \({\mathcal {H}}_{\pm ,0}\) and \(R=X,Y\) the rotations in SO(3) corresponding to \(\sigma _x, \sigma _y\), we need to verify whether \(\mathbf {v}_i\cdot \mathbf {v}_j=\mathbf {v}_i\cdot R\cdot \mathbf {v}_j\). However \(\mathbf {v}_+\cdot \mathbf {v}_{-}=\cos (2\vartheta )\), \(\mathbf {v}_\pm \cdot \mathbf {v}_0=\cos (\vartheta )\), while \(\mathbf {v}_0\cdot R\cdot \mathbf {v}_\pm =-\cos (\vartheta )\), \(\mathbf {v}_+\cdot Y\cdot \mathbf {v}_-=-\cos (2\vartheta )\) and \(\mathbf {v}_+\cdot X\cdot \mathbf {v}_-=-1\).

Similarly, we can easily identify all the allowed three-bang constructions that achieve the desired unitaries. We find that the central bang must be singular (\(\varOmega =0\)) for the \(\sigma _y\) gate. Then, since the desired \(\sigma _y\) gate cannot have a component along \(\sigma _x\) we have to set

$$\begin{aligned} \frac{i}{2}\mathrm {Tr}\{(U_\pm U_0U_\mp )\sigma _x\}\!=\!\sin (\vartheta )\sin \!\left( \!\frac{\omega _0t_2}{2}\!\right) \sin \!\left[ \frac{\omega _0(t_1\!-\!t_3)}{2}\right] \!=\!0 \end{aligned}$$

by selecting \(t_1^y=t_3^y\) (since \(t_2=0\) has already been excluded). Finally, \(t_1^y\) and \(t_2^y\) can be easily found algebraically, yielding Eq. (3) in the main text. For the \(\sigma _x\) gate, solutions with and without a singular bang are allowed. In both cases the outer rotations are about the same axis, e.g., \(U_+U_0U_+\) or \(U_+U_-U_+\), and of the same duration, \(t_1^x=t_3^x\). We can then calculate explicitly the times and compare the two possible solutions to select the time-optimal one. We find that the shortest evolution is obtained by discarding the singular solution, resulting in the times in Eq. (3) in the main text.

1.3 Time-optimal control of two qubits

Extending the results of BB TO control to more than one qubit is generally difficult, but results have been found for some particular cases [51, 63, 65]. In particular, it has been found [51] that for two qubits with opposite drift terms and under the same control,

$$\begin{aligned} {\mathcal {H}}_\pm =\frac{\omega _0}{2}(\sigma _z^1-\sigma _z^2)\pm \frac{\varOmega }{2}(\sigma _x^1+\sigma _x^2) \end{aligned}$$

the TO problem can be solved simultaneously. In particular, for \(\pi \) rotations, we recover the same solutions found for one qubit. Then we could repeat the analysis performed for FATO control of one qubit; the fidelity is simply the square of the fidelity found for one qubit.

We note that while these analytical results are restricted to particular cases, they could be at the basis of numerical searches in more complex situations. For example, knowing the control function and required bandwidth for two non-interacting qubits could be used as initial guess for numerical searches of the control profile for two interacting qubits.

Bang–bang control can as well be used to achieve two-qubit gates. Time-optimal solutions for the steering of two qubits with Hamiltonian \({\mathcal {H}}=J\sigma _z^1\sigma _z^2/2\) were indeed found under the assumption of delta pulses (zero-duration pulses at infinite driving power). While the control solutions obtained when relaxing these assumptions might not be time-optimal, we can still aim to preserve the optimal time and look for the ensuing drop in fidelity. In the main text, we considered an exemplary gate, the SWAP gate between two qubits (swapping their states):

$$\begin{aligned} U_{swap}=\left[ \begin{array}{cccc} 1&{}0&{}0&{}0\\ 0&{}0&{}1&{}0\\ 0&{}1&{}0&{}0\\ 0&{}0&{}0&{}1 \end{array}\right] \end{aligned}$$

As shown in [52], this gate can be obtained in a time \(t=3\pi /2J\) by applying instantaneous \(\pi /2\) pulses about x and y. This ideal control can be in practice replaced by finite-duration (rectangular) pulses, to account for finite control strength. In turn rectangular pulses can be replaced by FATO driving to take into account the control finite bandwidth. Figure 7 shows the control sequence we implemented to analyze the fidelity behavior of FATO for two-qubit control, as shown in Fig. 6 of the main text.

Fig. 7
figure 7

SWAP Gate. We show the control profile for realizing a SWAP gate with the FATO control. In red is the driving along the x axis and in blue along the y axis. For the bandwidth considered here (\(\varDelta \omega =400J\)) the FATO control completely masks the BB control (solid black lines) (Color figure online)

Fidelity

Here we provide further details on the calculations of the fidelity. Due to FATO control, the system evolves under the Hamiltonian \({\mathcal {H}}\!=\!{\mathcal {H}}_{id}(t)-{\mathcal {H}}_R(t)\), with

$$\begin{aligned} \begin{array}{l} {\mathcal {H}}_{id}(t)\!=\!\omega _0/2[\sigma _z+f(t)\tan (\vartheta )\sigma _x]\\ {\mathcal {H}}_R(t)\!=\!\omega _0/2\tan (\vartheta ) R_K\!(t)\sigma _x, \end{array} \end{aligned}$$

Here f(t) is the BB control function \(f(t)=\varOmega (t)/{\overline{\varOmega }}\) and \(R_K(t)\) the remainder of the truncated Fourier series of f(t),

$$\begin{aligned} R_K(t)=\sum _{k=K+1}^\infty [s_k\sin ({2\pi k t}/T)+ c_k\cos ({2\pi k t}/T)]. \end{aligned}$$
(8)

In order to calculate the infidelity, we consider the propagator \(U_K\) achieved by implementing a control field according to FATO to order K, satisfying

$$\begin{aligned} i\dot{U}_K(t)\!=[{\mathcal {H}}_{id}(t)-{\mathcal {H}}_R(t)]U_K(t) \end{aligned}$$
(9)

and the propagator due to the ideal BB evolution, \(U_{id}(t)\) defined by

$$\begin{aligned} i\dot{U}_{id}(t)={\mathcal {H}}_{id}(t)U_{id}(t) \end{aligned}$$
(10)

The infidelity of the truncated FATO control can be evaluated using the entanglement fidelity [48]

$$\begin{aligned}F=|\mathrm {Tr}[U_{id}^\dag (T)U_K(T)]|/2\end{aligned}$$

We can decompose the total propagator \(U_K(T)\) as \(U_K(T)=U_{id}(T)U_R(T)\), by defining the error propagator \(U_R(t)=U_{id}^\dag (t)U_K(t)\). Then the fidelity is simply defined as \(F=|\mathrm {Tr}[U_{R}(T)]|/2\).

The error propagator can be evaluated by moving to the toggling frame defined by the ideal control Hamiltonian. In this frame, the Hamiltonian becomes

$$\begin{aligned}{\widetilde{{\mathcal {H}}}}_R(t) = U^\dag _{id}(t){\mathcal {H}}_R(t)U_{id}(t)\end{aligned}$$

and the error propagator satisfies the Schr\(\ddot{\text {o}}\)dinger equation

$$\begin{aligned}i\dot{{\widetilde{U}}}_R(t)={\widetilde{{\mathcal {H}}}}_R(t){\widetilde{U}}_R(t)\end{aligned}$$

We can approximate \(U_R\) with a first-order Magnus expansion given by the effective Hamiltonian

$$\begin{aligned}{\overline{{\mathcal {H}}}}_R=\int _0^T {\widetilde{{\mathcal {H}}}}_R(t')dt'\end{aligned}$$

Consider for example the weak driving regime. The contribution to \({\overline{{\mathcal {H}}}}_R\) from each bang is given by the integral over the interval \([t_j,t_{j+1}]\) of

$$\begin{aligned} {\widetilde{{\mathcal {H}}}}_j\!=\!\omega _0\tan \!(\vartheta )R_K\!(t)U_{id}^\dag (t_j) [e^{i{\mathcal {H}}_\pm t}\sigma _xe^{-i{\mathcal {H}}_\pm t}]U_{id}(t_j) \end{aligned}$$
(11)

Each pair of ideal propagators \(U_-U_+\) creates a rotation \(e^{-2i\sigma _y\vartheta }\). Since the angle \(\vartheta \) is small for weak driving, we can approximate this expression by ignoring the time evolution due to \({\mathcal {H}}_{id}\) during the \(j^{th}\) time interval and only considering its effects stroboscopically. Then Eq. (11) reduces to

$$\begin{aligned}&{\widetilde{{\mathcal {H}}}}_j=\frac{\omega _0}{2}\tan (\vartheta )R_K(t)U_{id}(t_{j+1})\sigma _xU_{id}(t_{j+1})\\&\qquad = \frac{\omega _0}{2}\tan (\vartheta )R_K(t)[(-1)^j\cos (2j\vartheta )\sigma _x+\sin (2j\vartheta )\sigma _z]\nonumber \end{aligned}$$
(12)

Note that the sign of the \(\sigma _x\) terms follows the same pattern as the BB function f(t). Setting \(j(t)=\lceil t/T\rceil \), we then need to evaluate the integrals

$$\begin{aligned}\frac{2}{T}\int _0^T f(t)\cos [2j(t)\vartheta ]\sin (2\pi kt/T)dt=s_k\frac{\vartheta }{\pi }\end{aligned}$$

and

$$\begin{aligned}\frac{2}{T}\int _0^T \sin [2j(t)\vartheta ]\sin (2\pi kt/T)dt=-s_k\frac{\vartheta }{\pi }\tan (\vartheta )\end{aligned}$$

We thus obtain the average Hamiltonian

$$\begin{aligned} {\overline{{\mathcal {H}}}}_R=\frac{\omega _0}{2}\tan (\vartheta )\frac{\vartheta }{\pi }\sum _{k=K+1}^\infty \!\!\!s_k^2\ [\sigma _x-\tan (\vartheta )\sigma _z], \end{aligned}$$
(13)

where we recognize the mean error of the truncated Fourier series, \({\mathcal {E}}_K=\frac{1}{2}\sum _{k=K+1}^\infty \!s_k^2\). The fidelity is then given by \(F=\cos (\Vert {\overline{{\mathcal {H}}}}_R\Vert T)\):

$$\begin{aligned}&F=\cos \left( \frac{\vartheta }{\pi }\frac{\omega _0T}{2\cos (\vartheta )} \tan (\vartheta ){\mathcal {E}}_K \Vert \cos (\vartheta )\sigma _x-\sin (\vartheta )\sigma _z\Vert \right) \nonumber \\&\quad =\cos \left( \frac{\pi }{2}\tan (\vartheta ){\mathcal {E}}_K\right) . \end{aligned}$$
(14)

A similar calculation can be done for the ultrastrong driving case. However, in that case each “bang” has a long duration, and thus we need to start from Eq. (11) to find the average Hamiltonian and only approximate or numerical solutions can be found. Still, we find that the solutions depend on the mean Fourier error in a simple way, \(F_s^x\approx \cos [2/\pi \sin (\vartheta ){\mathcal {E}}_K]\) and \(F_s^y\approx \cos [2/\pi \tan (\vartheta ){\mathcal {E}}_K]\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hirose, M., Cappellaro, P. Time-optimal control with finite bandwidth. Quantum Inf Process 17, 88 (2018). https://doi.org/10.1007/s11128-018-1845-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-018-1845-6

Keywords

Navigation