Deterministic remote preparation of arbitrary multi-qubit equatorial states via two-qubit entangled states

Article
  • 10 Downloads

Abstract

We propose an efficient scheme for remotely preparing an arbitrary n-qubit equatorial state via n two-qubit maximally entangled states. Compared to the former scheme (Wei et al. in Quantum Inf Process 16:260, 2017) that has the 50% successful probability when the amplitude factors of prepared states are \(2^{-n{/}2}\), the probability would be increased to 100% by using of our modified proposal. The feasibility of our scheme for remote preparation arbitrary multi-qubit equatorial states is explicitly demonstrated by theoretical studies and concrete examples.

Keywords

Remote state preparation Successful probability Arbitrary equatorial states 

Notes

Acknowledgements

The authors thank J.W. Luo, B.X. Zhao, and Y.X. Li for helpful discussions. This work is supported by the Program for National Natural Science Foundation of China (Grant Nos. 61673389, 61703428, and 61703422).

References

  1. 1.
    Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)MATHGoogle Scholar
  2. 2.
    Lo, H.K.: Classical-communication cost in distributed quantum-information processing: a generalization of quantum-communication complexity. Phys. Rev. A 62, 012313 (2000)ADSCrossRefGoogle Scholar
  3. 3.
    Bennett, C.H., Wootters, W.K.: Communication via one-and two-particle operators on Einstein–Podolsky–Rosen state. Phys. Rev. Lett. 69, 2881 (1992)ADSMathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Bennett, C.H., Brassard, G., Grepeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895 (1993)ADSMathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Li, W.L., Li, C.F., Guo, G.C.: Probabilistic teleportation and entanglement matching. Phys. Rev. A 61, 034301 (2000)ADSCrossRefGoogle Scholar
  6. 6.
    Dai, H.Y., Chen, P.X., Li, C.Z.: Probabilistic teleportation of an arbitrary three-particle state via a partial entangled four-particle state and a partial entangled pair. Chin. Phys. 12, 1354 (2003)ADSCrossRefGoogle Scholar
  7. 7.
    Yin, X.F., Liu, Y.M., Zhang, Z.Y., Zhang, W., Zhang, Z.J.: Perfect teleportation of an arbitrary three-qubit state with the highly entangled six-qubit genuine state. Sci. China Phys. Mech. Astron. 53, 2059 (2010)ADSCrossRefGoogle Scholar
  8. 8.
    Wei, J.H., Dai, H.Y., Zhang, M.: A new scheme for probabilistic teleportation and its potential applications. Commun. Theor. Phys. 60, 651 (2013)ADSCrossRefMATHGoogle Scholar
  9. 9.
    Wei, J.H., Qi, B., Dai, H.Y., Huang, J.H., Zhang, M.: Deterministic generation of symmetric multi-qubit Dicke states: an application of quantum feedback control. IET Control Theory Appl. 9, 2500 (2015)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Zhou, P., Li, X.H., Deng, F.G., Zhou, H.Y.: Multiparty-controlled teleportation of an arbitrary \(m\)-qudit state with a pure entangled quantum channel. J. Phys. A 40, 13121 (2007)ADSMathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Dai, H.Y., Li, C.Z., Chen, P.X.: Joint remote preparation of an arbitrary m-qudit state with a pure entangled quantum channel via positive operator-valued measurement. Chin. Phys. Lett. 20, 1196 (2003)ADSCrossRefGoogle Scholar
  12. 12.
    Luo, M.X., Chen, X.B., Ma, S.Y., Niu, X.X., Yang, Y.X.: Joint remote preparation of an arbitrary three-qubit state. Opt. Commun. 283, 4796 (2010)ADSCrossRefGoogle Scholar
  13. 13.
    Luo, M.X., Deng, Y.: Joint remote preparation of an arbitrary 4-qubit \({\chi } \)-state. Int. J. Theor. Phys. 51, 3027 (2012)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Peng, J.Y., Bai, M.Q., Mo, Z.W.: Joint remote state preparation of a four-dimensional quantum state. Chin. Phys. Lett. 31, 010301 (2014)ADSCrossRefGoogle Scholar
  15. 15.
    Hou, K., Yu, J.Y., Yan, F.: Deterministic remote preparation of a four-particle entangled W state. Int. J. Theor. Phys. 54, 3092 (2015)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Choudhury, B.S., Dhara, A.: Joint remote state preparation for two-qubit equatorial states. Quantum Inf. Process. 14, 373 (2015)ADSMathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Wang, C., Zeng, Z., Li, X.H.: Controlled remote state preparation via partially entangled quantum channel. Quantum Inf. Process. 14, 1077 (2015)ADSMathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Chen, Q.Q., Xia, Y.: Joint remote preparation of an arbitrary two-qubit state via a generalized seven-qubit brown state. Laser Phys. 26, 015203 (2016)ADSCrossRefGoogle Scholar
  19. 19.
    Zhang, D., Zha, X.W., Duan, Y.J.: Bidirectional and asymmetric quantum controlled teleportation. Quantum Inf. Process. 14, 3835 (2015)ADSMathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Dai, H.Y., Chen, P.X., Liang, L.M., Li, C.Z.: Classical communication cost and remote preparation of the four-particle GHZ class state. Phys. Lett. A 355, 285 (2006)ADSCrossRefGoogle Scholar
  21. 21.
    Dai, H.Y., Chen, P.X., Zhang, M., Li, C.Z.: Remote preparation of an entangled two-qubit state with three parties. Chin. Phys. B 17, 27 (2008)ADSCrossRefGoogle Scholar
  22. 22.
    Wei, J.H., Dai, H.Y., Zhang, M.: Two efficient schemes for probabilistic remote state preparation and the combination of both schemes. Quantum Inf. Process. 13, 2115 (2014)ADSMathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Ma, S.Y., Chen, X.B., Luo, M.X., Zhang, R., Yang, Y.X.: Remote preparation of a four-particle entangled cluster-type state. Opt. Commun. 284(23), 4088 (2010)ADSGoogle Scholar
  24. 24.
    Zhang, D., Zha, X.W., Duan, Y.J., Yang, Y.Q.: Deterministic controlled bidirectional remote state preparation via a six-qubit entangled state. Quantum Inf. Process. 15, 2169 (2016)ADSMathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    Dai, H.Y., Zhang, M., Kuang, L.M.: Classical communication cost and remote preparation of multi-qubit with three-party. Commun. Theor. Phys. 50, 73 (2008)ADSCrossRefGoogle Scholar
  26. 26.
    Jiang, M., Dong, D.Y.: Multi-party quantum state sharing via various probabilistic channels. Quantum Inf. Process. 12, 237 (2013)ADSMathSciNetCrossRefMATHGoogle Scholar
  27. 27.
    Zhou, P.: Joint remote preparation of an arbitrary m-qudit state with a pure entangled quantum channel via positive operator-valued measurement. J. Phys. A 45, 215305 (2012)ADSMathSciNetCrossRefMATHGoogle Scholar
  28. 28.
    Jiang, M., Jiang, F.: Deterministic joint remote preparation of arbitrary multi-qudit states. Phys. Lett. A 377(38), 2524–2530 (2013)ADSMathSciNetCrossRefMATHGoogle Scholar
  29. 29.
    Xia, Y., Song, J., Song, H.S.: Multiparty remote state preparation. J. Phys. B 40(18), 3719 (2007)ADSCrossRefGoogle Scholar
  30. 30.
    Wang, D., Ye, L.: Multiparty-controlled joint remote state preparation. Quantum Inf. Process. 12, 3223 (2013)ADSMathSciNetCrossRefMATHGoogle Scholar
  31. 31.
    Peng, X., Zhu, X., Fang, X., Feng, M., Liu, M., Gao, K.: Experimental implementation of remote state preparartion by nucler magtic resonance. Phys. Lett. A 306, 271 (2003)ADSCrossRefGoogle Scholar
  32. 32.
    Xiang, G.Y., Li, J., Bo, Y., Guo, G.C.: Remote preparation of mixed states via noisy entanglement. Phys. Rev. A 72, 012315 (2005)ADSCrossRefGoogle Scholar
  33. 33.
    Bruß, D., Cinchetti, M., D’Ariano, G.M., Macchiavello, C.: Phase-covariant quantum cloning. Phys. Rev. A 62, 012302 (2000)ADSCrossRefGoogle Scholar
  34. 34.
    Pati, A.K.: Minimum classical bit for remote preparation and measurement of a qubit. Phys. Rev. A 63, 014302 (2001)ADSCrossRefGoogle Scholar
  35. 35.
    Li, X.H., Ghose, S.: Optimal joint remote state preparation of equatorial states. Quantum Inf. Process. 14, 4585 (2015)ADSMathSciNetCrossRefMATHGoogle Scholar
  36. 36.
    Wei, J.H., Shi, L., Ma, L.H., Xue, Y., Zhuang, X.C., Li, X.S., Kang, Q.Y.: Remote preparation of an arbitrary multi-qubit state via two-qubit entangled states. Quantum Inf. Process. 16, 260 (2017)ADSMathSciNetCrossRefGoogle Scholar
  37. 37.
    Huelga, S.F., Vaccaro, J.A., Chefles, A., Plenio, M.B.: Quantum remote control: teleportation of unitary operations. Phys. Rev. A 63, 042303 (2001)ADSCrossRefMATHGoogle Scholar
  38. 38.
    Huelga, S.F., Plenio, M.B., Vaccaro, J.A.: Remote control of restricted sets of operations: teleportation of angles. Phys. Rev. A 65, 042316 (2002)ADSCrossRefGoogle Scholar
  39. 39.
    Wu, L.A., Lidar, D.A.: Universal quantum computation using exchange interactions and teleportation of single-qubit operations. Phys. Rev. A 67, 050303 (2002)CrossRefGoogle Scholar
  40. 40.
    Kang, P., Dai, H.Y., Wei, J.H., Zhang, M.: Optimal quantum cloning based on the maximin principle by using a priori information. Phys. Rev. A 94, 042304 (2016)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Information and Navigation CollegeAir Force Engineering UniversityXi’anPeople’s Republic of China
  2. 2.Department of Automatic Control, College of Mechatronics and AutomationNational University of Defense TechnologyChangshaPeople’s Republic of China
  3. 3.Aeronautics and Astronautics Engineering CollegeAir Force Engineering UniversityXi’anPeople’s Republic of China

Personalised recommendations