Skip to main content
Log in

Deterministic remote preparation of arbitrary multi-qubit equatorial states via two-qubit entangled states

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We propose an efficient scheme for remotely preparing an arbitrary n-qubit equatorial state via n two-qubit maximally entangled states. Compared to the former scheme (Wei et al. in Quantum Inf Process 16:260, 2017) that has the 50% successful probability when the amplitude factors of prepared states are \(2^{-n{/}2}\), the probability would be increased to 100% by using of our modified proposal. The feasibility of our scheme for remote preparation arbitrary multi-qubit equatorial states is explicitly demonstrated by theoretical studies and concrete examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  2. Lo, H.K.: Classical-communication cost in distributed quantum-information processing: a generalization of quantum-communication complexity. Phys. Rev. A 62, 012313 (2000)

    Article  ADS  Google Scholar 

  3. Bennett, C.H., Wootters, W.K.: Communication via one-and two-particle operators on Einstein–Podolsky–Rosen state. Phys. Rev. Lett. 69, 2881 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Bennett, C.H., Brassard, G., Grepeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Li, W.L., Li, C.F., Guo, G.C.: Probabilistic teleportation and entanglement matching. Phys. Rev. A 61, 034301 (2000)

    Article  ADS  Google Scholar 

  6. Dai, H.Y., Chen, P.X., Li, C.Z.: Probabilistic teleportation of an arbitrary three-particle state via a partial entangled four-particle state and a partial entangled pair. Chin. Phys. 12, 1354 (2003)

    Article  ADS  Google Scholar 

  7. Yin, X.F., Liu, Y.M., Zhang, Z.Y., Zhang, W., Zhang, Z.J.: Perfect teleportation of an arbitrary three-qubit state with the highly entangled six-qubit genuine state. Sci. China Phys. Mech. Astron. 53, 2059 (2010)

    Article  ADS  Google Scholar 

  8. Wei, J.H., Dai, H.Y., Zhang, M.: A new scheme for probabilistic teleportation and its potential applications. Commun. Theor. Phys. 60, 651 (2013)

    Article  ADS  MATH  Google Scholar 

  9. Wei, J.H., Qi, B., Dai, H.Y., Huang, J.H., Zhang, M.: Deterministic generation of symmetric multi-qubit Dicke states: an application of quantum feedback control. IET Control Theory Appl. 9, 2500 (2015)

    Article  MathSciNet  Google Scholar 

  10. Zhou, P., Li, X.H., Deng, F.G., Zhou, H.Y.: Multiparty-controlled teleportation of an arbitrary \(m\)-qudit state with a pure entangled quantum channel. J. Phys. A 40, 13121 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Dai, H.Y., Li, C.Z., Chen, P.X.: Joint remote preparation of an arbitrary m-qudit state with a pure entangled quantum channel via positive operator-valued measurement. Chin. Phys. Lett. 20, 1196 (2003)

    Article  ADS  Google Scholar 

  12. Luo, M.X., Chen, X.B., Ma, S.Y., Niu, X.X., Yang, Y.X.: Joint remote preparation of an arbitrary three-qubit state. Opt. Commun. 283, 4796 (2010)

    Article  ADS  Google Scholar 

  13. Luo, M.X., Deng, Y.: Joint remote preparation of an arbitrary 4-qubit \({\chi } \)-state. Int. J. Theor. Phys. 51, 3027 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  14. Peng, J.Y., Bai, M.Q., Mo, Z.W.: Joint remote state preparation of a four-dimensional quantum state. Chin. Phys. Lett. 31, 010301 (2014)

    Article  ADS  Google Scholar 

  15. Hou, K., Yu, J.Y., Yan, F.: Deterministic remote preparation of a four-particle entangled W state. Int. J. Theor. Phys. 54, 3092 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  16. Choudhury, B.S., Dhara, A.: Joint remote state preparation for two-qubit equatorial states. Quantum Inf. Process. 14, 373 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Wang, C., Zeng, Z., Li, X.H.: Controlled remote state preparation via partially entangled quantum channel. Quantum Inf. Process. 14, 1077 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Chen, Q.Q., Xia, Y.: Joint remote preparation of an arbitrary two-qubit state via a generalized seven-qubit brown state. Laser Phys. 26, 015203 (2016)

    Article  ADS  Google Scholar 

  19. Zhang, D., Zha, X.W., Duan, Y.J.: Bidirectional and asymmetric quantum controlled teleportation. Quantum Inf. Process. 14, 3835 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. Dai, H.Y., Chen, P.X., Liang, L.M., Li, C.Z.: Classical communication cost and remote preparation of the four-particle GHZ class state. Phys. Lett. A 355, 285 (2006)

    Article  ADS  Google Scholar 

  21. Dai, H.Y., Chen, P.X., Zhang, M., Li, C.Z.: Remote preparation of an entangled two-qubit state with three parties. Chin. Phys. B 17, 27 (2008)

    Article  ADS  Google Scholar 

  22. Wei, J.H., Dai, H.Y., Zhang, M.: Two efficient schemes for probabilistic remote state preparation and the combination of both schemes. Quantum Inf. Process. 13, 2115 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. Ma, S.Y., Chen, X.B., Luo, M.X., Zhang, R., Yang, Y.X.: Remote preparation of a four-particle entangled cluster-type state. Opt. Commun. 284(23), 4088 (2010)

    ADS  Google Scholar 

  24. Zhang, D., Zha, X.W., Duan, Y.J., Yang, Y.Q.: Deterministic controlled bidirectional remote state preparation via a six-qubit entangled state. Quantum Inf. Process. 15, 2169 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. Dai, H.Y., Zhang, M., Kuang, L.M.: Classical communication cost and remote preparation of multi-qubit with three-party. Commun. Theor. Phys. 50, 73 (2008)

    Article  ADS  Google Scholar 

  26. Jiang, M., Dong, D.Y.: Multi-party quantum state sharing via various probabilistic channels. Quantum Inf. Process. 12, 237 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. Zhou, P.: Joint remote preparation of an arbitrary m-qudit state with a pure entangled quantum channel via positive operator-valued measurement. J. Phys. A 45, 215305 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. Jiang, M., Jiang, F.: Deterministic joint remote preparation of arbitrary multi-qudit states. Phys. Lett. A 377(38), 2524–2530 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. Xia, Y., Song, J., Song, H.S.: Multiparty remote state preparation. J. Phys. B 40(18), 3719 (2007)

    Article  ADS  Google Scholar 

  30. Wang, D., Ye, L.: Multiparty-controlled joint remote state preparation. Quantum Inf. Process. 12, 3223 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. Peng, X., Zhu, X., Fang, X., Feng, M., Liu, M., Gao, K.: Experimental implementation of remote state preparartion by nucler magtic resonance. Phys. Lett. A 306, 271 (2003)

    Article  ADS  Google Scholar 

  32. Xiang, G.Y., Li, J., Bo, Y., Guo, G.C.: Remote preparation of mixed states via noisy entanglement. Phys. Rev. A 72, 012315 (2005)

    Article  ADS  Google Scholar 

  33. Bruß, D., Cinchetti, M., D’Ariano, G.M., Macchiavello, C.: Phase-covariant quantum cloning. Phys. Rev. A 62, 012302 (2000)

    Article  ADS  Google Scholar 

  34. Pati, A.K.: Minimum classical bit for remote preparation and measurement of a qubit. Phys. Rev. A 63, 014302 (2001)

    Article  ADS  Google Scholar 

  35. Li, X.H., Ghose, S.: Optimal joint remote state preparation of equatorial states. Quantum Inf. Process. 14, 4585 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. Wei, J.H., Shi, L., Ma, L.H., Xue, Y., Zhuang, X.C., Li, X.S., Kang, Q.Y.: Remote preparation of an arbitrary multi-qubit state via two-qubit entangled states. Quantum Inf. Process. 16, 260 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  37. Huelga, S.F., Vaccaro, J.A., Chefles, A., Plenio, M.B.: Quantum remote control: teleportation of unitary operations. Phys. Rev. A 63, 042303 (2001)

    Article  ADS  MATH  Google Scholar 

  38. Huelga, S.F., Plenio, M.B., Vaccaro, J.A.: Remote control of restricted sets of operations: teleportation of angles. Phys. Rev. A 65, 042316 (2002)

    Article  ADS  Google Scholar 

  39. Wu, L.A., Lidar, D.A.: Universal quantum computation using exchange interactions and teleportation of single-qubit operations. Phys. Rev. A 67, 050303 (2002)

    Article  Google Scholar 

  40. Kang, P., Dai, H.Y., Wei, J.H., Zhang, M.: Optimal quantum cloning based on the maximin principle by using a priori information. Phys. Rev. A 94, 042304 (2016)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors thank J.W. Luo, B.X. Zhao, and Y.X. Li for helpful discussions. This work is supported by the Program for National Natural Science Foundation of China (Grant Nos. 61673389, 61703428, and 61703422).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jiahua Wei or Lei Shi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, J., Shi, L., Zhu, Y. et al. Deterministic remote preparation of arbitrary multi-qubit equatorial states via two-qubit entangled states. Quantum Inf Process 17, 70 (2018). https://doi.org/10.1007/s11128-018-1837-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-018-1837-6

Keywords

Navigation