Advertisement

Noise effects on entanglement distribution by separable state

  • Najmeh Tabe Bordbar
  • Laleh Memarzadeh
Article
  • 119 Downloads

Abstract

We investigate noise effects on the performance of entanglement distribution by separable state. We consider a realistic situation in which the mediating particle between two distant nodes of the network goes through a noisy channel. For a large class of noise models, we show that the average value of distributed entanglement between two parties is equal to entanglement between particular bipartite partitions of target qubits and exchange qubit in intermediate steps of the protocol. This result is valid for distributing two-qubit/qudit and three-qubit entangled states. In explicit examples of the noise family, we show that there exists a critical value of noise parameter beyond which distribution of distillable entanglement is not possible. Furthermore, we determine how this critical value increases in terms of Hilbert space dimension, when distributing d-dimensional Bell states.

Keywords

Entanglement Entanglement generation Distribution Quantum noise Quantum communication channels 

Notes

Acknowledgements

We acknowledge financial support by Sharif University of Technology’s Office of Vice President for Research under Grant No. G950223. L. M acknowledges hospitality of the Abdus Salam International Centre for Theoretical Physics (ICTP) where parts of this work were completed.

References

  1. 1.
    Zurek, W.H.: Decoherence and the transition from quantum to classical-revisited. Phys. Today 44, 36–44 (1991)CrossRefGoogle Scholar
  2. 2.
    Knill, E., Laflamme, R.: Theory of quantum error-correcting codes. Phys. Rev. A 55, 900–911 (1997)ADSMathSciNetCrossRefGoogle Scholar
  3. 3.
    Wiseman, H.M., Milburn, G.J.: Quantum Measurement and Control. Cambridge University Press, New York (2010)MATHGoogle Scholar
  4. 4.
    Gregoratti, M., Werner, R.F.: Quantum lost and found. J. Mod. Opt. 50, 915–933 (2003)ADSMathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Memarzadeh, L., Macchiavello, C., Mancini, S.: Recovering quantum information through partial access to the environment. N. J. Phys. 13, 103031-1–103031-16 (2011)Google Scholar
  6. 6.
    Kimble, H.J.: The quantum internet. Nature 453, 1023–1030 (2008)ADSCrossRefGoogle Scholar
  7. 7.
    Bose, S., Vedral, V., Knight, P.L.: Multiparticle generalization of entanglement swapping. Phys. Rev. A 57, 822–829 (1998)ADSCrossRefGoogle Scholar
  8. 8.
    Bennett, C.H., DiVincenzo, D.P., Smolin, J.A., Wootters, William K.: Mixed-state entanglement and quantum error correction. Phys. Rev. A 54, 3824–3851 (1996)ADSMathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Cirac, J.I., Dür, W., Kraus, B., Lewenstein, M.: Entangling operations and their implementation using a small amount of entanglement. Phys. Rev. Lett. 86, 544–547 (2001)ADSCrossRefGoogle Scholar
  10. 10.
    Kraus, B., Cirac, J.I.: Optimal creation of entanglement using a two-qubit gate. Phys. Rev. A 63, 062309-1–062309-8 (2001)ADSCrossRefGoogle Scholar
  11. 11.
    Cirac, J.I., Zoller, P.: Preparation of macroscopic superpositions in many-atom systems. Phys. Rev. A 50, R2799–R2802(R) (1994)ADSCrossRefGoogle Scholar
  12. 12.
    Braun, D.: Creation of entanglement by interaction with a common heat bath. Phys. Rev. Lett. 89, 277901–277904 (2002)CrossRefGoogle Scholar
  13. 13.
    Benatti, F., Floreanini, R., Piani, M.: Environment induced entanglement in Markovian dissipative dynamics. Phys. Rev. Lett. 91, 070402–070404 (2003)ADSCrossRefGoogle Scholar
  14. 14.
    Memarzadeh, L., Mancini, S.: Stationary entanglement achievable by environment-induced chain links. Phys. Rev. A 83, 042329-1–042329-5 (2011)ADSCrossRefGoogle Scholar
  15. 15.
    Memarzadeh, L., Mancini, S.: Entanglement dynamics for qubits dissipating into a common environment. Phys. Rev. A 87, 032303-1–032303-6 (2013)ADSCrossRefGoogle Scholar
  16. 16.
    Kwiat, P.G., Mattle, K., Weinfurter, H., Zeilinger, A., Sergienko, A.V., Shih, Y.: New high-intensity source of polarization-entangled photon pairs. Phys. Rev. Lett. 75, 4337–4341 (1995)ADSCrossRefGoogle Scholar
  17. 17.
    Spee, C., de Vicente, J.I., Kraus, B.: Remote entanglement preparation. Phys. Rev. A 88, 010305(R)-1–010305(R)-4 (2013)ADSCrossRefGoogle Scholar
  18. 18.
    Cubitt, T.S., Verstraete, F., Dür, W., Cirac, J.I.: Separable states can be used to distribute entanglement. Phys. Rev. Lett. 91, 037902-1–037902-4 (2003)ADSGoogle Scholar
  19. 19.
    Fedrizzi, A., Zuppardo, M., Gillett, G.G., Broome, M.A., Almeida, M.P., Paternostro, M., White, A.G., Paterek, T.: Experimental distribution of entanglement with separable carriers. Phys. Rev. Lett. 111, 230504-1–230504-5 (2013)ADSCrossRefGoogle Scholar
  20. 20.
    Vollmer, C.E., Schulze, D., Eberle, T., Händchen, V., Fiurásek, J., Schnabel, R.: Experimental entanglement distribution by separable states. Phys. Rev. Lett. 111, 230505-1–230505-5 (2013)ADSCrossRefGoogle Scholar
  21. 21.
    Peuntinger, C., Chille, V., Mista Jr., L., Korolkova, N., Förtsch, M., Korger, J., Marquardt, C., Leuchs, G.: Distributing entanglement with separable states. Phys. Rev. Lett. 111, 230506-1–230506-5 (2013)ADSCrossRefGoogle Scholar
  22. 22.
    Mista Jr., L., Korolkova, N.: Distribution of continuous-variable entanglement by separable Gaussian states. Phy. Rev. A 77, 050302(R)-1–050302(R)-4 (2008)ADSMathSciNetCrossRefGoogle Scholar
  23. 23.
    Mista Jr., L., Korolkova, N.: Improving continuous-variable entanglement distribution by separable states. Phy. Rev. A 80, 032310-1–032310-7 (2009)ADSCrossRefGoogle Scholar
  24. 24.
    Karimipour, V., Memarzadeh, L., Bordbar, N.T.: Systematics of entanglement distribution by separable states. Phys. Rev. A 92, 032325-1–032325-5 (2015)ADSGoogle Scholar
  25. 25.
    Streltsov, A., Kampermann, H., Bru, D.: Quantum cost for sending entanglement. Phys. Rev. Lett. 108, 250501-1–250501-5 (2012)ADSCrossRefGoogle Scholar
  26. 26.
    Chuan, T.K., Maillard, J., Modi, K., Paterek, T., Paternostro, M., Piani, M.: Quantum discord bounds the amount of distributed entanglement. Phys. Rev. Lett. 109, 070501-1–070501-5 (2012)ADSCrossRefGoogle Scholar
  27. 27.
    Streltsov, A., Augusiak, R., Demianowicz, M., Lewenstein, M.: Progress towards a unified approach to entanglement distribution Phys. Rev. A 92, 012335-1–012335-14 (2015)CrossRefGoogle Scholar
  28. 28.
    Pal, R., Bandyopadhyay, S., Ghosh, S.: Entanglement sharing through noisy qubit channels: one-shot optimal singlet fraction. Phys. Rev. A 90, 052304-1–052304-8 (2014)ADSGoogle Scholar
  29. 29.
    Wootters, W.K.: Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 80, 2245–2248 (1998)ADSCrossRefMATHGoogle Scholar
  30. 30.
    King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Trans. Inf. Theory 47, 192–209 (2001)MathSciNetCrossRefMATHGoogle Scholar
  31. 31.
    Fujiwara, A., Algoet, P.: One-to-one parametrization of quantum channels. Phys. Rev. A 59, 3290–3294 (1999)ADSCrossRefGoogle Scholar
  32. 32.
    Ruskai, M.B., Szarek, S., Werner, E.: An analysis of completely-positive trace-preserving maps on M2. Linear Algebra Appl. 347, 159–187 (2002)MathSciNetCrossRefMATHGoogle Scholar
  33. 33.
    Vidal, G., Werner, R.F.: Computable measure of entanglement. Phys. Rev. A 65, 032314-1–032314-11 (2002)ADSCrossRefGoogle Scholar
  34. 34.
    Peres, A.: Separability criterion for density matrices. Phys. Rev. Lett. 77, 1413–1415 (1996)ADSMathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of PhysicsSharif University of TechnologyTehranIran

Personalised recommendations