Skip to main content
Log in

Quantum deconvolution

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We propose a method for stably removing noise from measurements of a quantum many-body system. The question is cast to a linear inverse problem by using a quantum Fischer information metric as figure of merit. This requires the ability to compute the adjoint of the noise channel with respect to the metric, which can be done analytically when the metric is evaluated at a Gaussian (quasi-free) state. This approach can be applied effectively to n-point functions of a quantum field theory. For translation invariant noise, this yields a stable deconvolution method on the first moments of the field which differs from what one would obtain from a purely classical analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Ferrie, C., Blume-Kohout, R.: Estimating the bias of a noisy coin. In: AIP Conference Proceedings 31st, vol. 1443, pp. 14–21. AIP (2012). arXiv:1201.1493

  2. Bény, C., Osborne, T.J.: The renormalization group via statistical inference. New J. Phys. 17, 083005 (2015). arXiv:1402.4949

    Article  MathSciNet  Google Scholar 

  3. Bény, C.: Coarse-grained distinguishability of field interactions. (2015). arXiv:1509.03249

  4. Petz, D.: Monotone metrics on matrix spaces. Linear Algebra Appl. 244, 81 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  5. Petz, D.: A dual in von Neumann algebras with weights. Q. J. Math. 35, 475 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  6. Lami, L., Das, S., Wilde, M.M.: Approximate reversal of quantum Gaussian dynamics. (2017). arXiv:1702.04737

  7. Gonzalez, R.C.E., Woods, S.L., Gonzalez, R.E.R.E.R.C., Woods, R.E., Eddins, S.L.: Digital image processing using MATLAB, 04; TA1637, G6 (2004)

  8. Petz, D.: Sufficiency of channels over von Neumann algebras. Q. J. Math. 39, 97 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  9. Barnum, H., Knill, E.: Reversing quantum dynamics with near-optimal quantum and classical fidelity. J. Math. Phys. 43, 2097 (2002). arXiv:quant-ph/0004088

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Fawzi, O., Renner, R.: Quantum conditional mutual information and approximate Markov chains. Commun. Math. Phys. 340, 575 (2015). arXiv:1410.0664

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Junge, M., Renner, R., Sutter, D., Wilde, M.M., Winter, A.: Universal recoverability in quantum information. In: 2016 IEEE International Symposium on Information Theory (ISIT), pp. 2494–2498. IEEE (2016)

  12. Sutter, D., Tomamichel, M., Harrow, A.W.: Strengthened monotonicity of relative entropy via pinched Petz recovery map. IEEE Trans. Inf. Theory 62, 2907 (2016). arXiv:1507.00303

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by the research fund of Hanyang University (HY-2016-2237).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cédric Bény.

Appendix

Appendix

Here we derive Eq. (5). We do the calculation in terms of the dual metric

$$\begin{aligned} \langle \!\langle E,F \rangle \!\rangle _\rho = \mathrm{Tr}\,({E}^\dagger \Omega _\rho (F)), \end{aligned}$$

which we extended to non-hermitian operators. With \(\Omega _\rho (X) = \sqrt{\rho }X \sqrt{\rho }\), this is

$$\begin{aligned} \langle \!\langle E,F \rangle \!\rangle _\rho = \rho (E^\dagger \rho ^{\tfrac{1}{2}} F \rho ^{-\tfrac{1}{2} }). \end{aligned}$$

We observe that if we write \(\rho \) as a Gibbs state for a quadratic Hamiltonian H, i.e. as \(\rho \propto \mathrm{e}^{-H}\), then

$$\begin{aligned} E \mapsto \rho ^s E \rho ^{-s} = \mathrm{e}^{-sH} E\, \mathrm{e}^{s H}. \end{aligned}$$

This is the imaginary time evolution generated by the Hamiltonian H. On a single canonical operator \(\phi (f)\), we have \(\rho ^{s} \phi (f) \rho ^{-s} = \phi (R_{s}^A f)\) where \(R_{-it}^A\) is the linear phase-space evolution matrix corresponding to the quadratic Hamiltonian H for time t. Here A denotes the state’s covariance matrix, which also uniquely defines H.

The slight difficulty this introduces is that \(R_{s}^A\) acts on a complexification of the phase space. We do not mean the usual technique of treating half of the phase-space variables as imaginary, which would yield an n-dimensional complex vector space from a 2n-dimensional real phase space. Instead, we simply allow all the vector coefficients to be complex, which yields a 2n-dimensional complex vector space.

In terms of the normal-ordered displacement operators \(G_f^A\), this is

$$\begin{aligned} \rho ^{\tfrac{1}{2}} G_{f}^A \rho ^{-\tfrac{1}{2}} = G_{R_{\frac{1}{2}}^A f}^A. \end{aligned}$$

Therefore, the dual metric can be computed via

$$\begin{aligned} \langle \!\langle G_f^A,G_g^A \rangle \!\rangle _\rho = \rho \left( (G_f^A)^{\dagger } G_{R_{\frac{1}{2}}^A g}^A\right) . \end{aligned}$$
(13)

We need to be careful about how the displacement operators behave on the complexified phase space. We have

$$\begin{aligned} W_f^\dagger W_g = W_{g - \overline{f}} \, \mathrm{e}^{\tfrac{i}{2} (f ,\Delta g)}, \end{aligned}$$

where the phase-space scalar product is extended so as to be conjugate-symmetric. For instance, this implies

$$\begin{aligned} \rho (W_f) = \mathrm{e}^{\tfrac{1}{2} (\overline{f}, A f)}. \end{aligned}$$

where the overline denotes complex conjugation component-wise. It follows that

$$\begin{aligned} \rho ((G_f^A)^\dagger G_g^A) = \mathrm{e}^{\left( f, (A+ \tfrac{i}{2} \Delta ) g\right) }. \end{aligned}$$
(14)

The adjointness relation defining \(\mathcal N_*\) reads

$$\begin{aligned} \langle \!\langle G_f^A,\mathcal N^\dagger (G_g^B) \rangle \!\rangle _\rho = \langle \!\langle \mathcal N^\dagger _*(G_f^A),G_g^B \rangle \!\rangle _{\mathcal N(\rho )} \end{aligned}$$
(15)

where A is the covariance matrix for \(\rho \) and B is the covariance matrix for \(\mathcal N(\rho )\), namely \(B = X^\dagger A X + Y\). Using

$$\begin{aligned} \mathcal N^\dagger (G_g^B) = G_{Xg}^A, \end{aligned}$$

and Eq. (14), we obtain

$$\begin{aligned} \langle \!\langle G_f^A,\mathcal N^\dagger (G_g^B) \rangle \!\rangle _\rho = \mathrm{e}^{(f, (A+ \tfrac{i}{2} \Delta ) R_{\frac{1}{2}}^A Xg)} \end{aligned}$$
(16)

Hence, with the ansatz

$$\begin{aligned} \mathcal N_*^\dagger (G_f^A) = G_{X_*f}^B, \end{aligned}$$

Eq. (15) is satisfied if

$$\begin{aligned} \mathrm{e}^{(f, (A+ \tfrac{i}{2} \Delta ) R_{\frac{1}{2}}^A Xg)} = \mathrm{e}^{(X_* f, (B+ \tfrac{i}{2} \Delta ) R_{\frac{1}{2}}^B g)} \end{aligned}$$
(17)

for all f, g, which implies

$$\begin{aligned} (A+ \tfrac{i}{2} \Delta ) R_{\frac{1}{2}}^A X = X_*^\dagger (B+ \tfrac{i}{2} \Delta ) R_{\frac{1}{2}}^B, \end{aligned}$$

or

$$\begin{aligned} X_* = (B+ \tfrac{i}{2} \Delta )^{-1} (R_{-\frac{1}{2}}^B)^\dagger X^\dagger (R_{\frac{1}{2}}^A)^\dagger (A+ \tfrac{i}{2} \Delta ). \end{aligned}$$

To obtain the form of Eq. (5), we use the fact that \((R^A_s)^{-1} = R^A_{-s} = \overline{R^A_s}\), which can be seen for instance from the explicit expression Eq. (7). We also use the fact that the covariance matrix and symplectic structure are invariant under \(R_s\), i.e. such that \((R^A_s)^T(A+ \tfrac{i}{2} \Delta ) R^A_s = (A+ \tfrac{i}{2} \Delta )\). From these properties it follows that

$$\begin{aligned} (A+ \tfrac{i}{2} \Delta ) R^A_s = (R^A_s)^\dagger (A+ \tfrac{i}{2} \Delta ), \end{aligned}$$

which yields

$$\begin{aligned} X_* = R_{-\frac{1}{2}}^B (B+ \tfrac{i}{2} \Delta )^{-1} X^\dagger (A+ \tfrac{i}{2} \Delta ) R_{\frac{1}{2}}^A. \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bény, C. Quantum deconvolution. Quantum Inf Process 17, 26 (2018). https://doi.org/10.1007/s11128-017-1796-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-017-1796-3

Keywords

Navigation