Quantum deconvolution

  • Cédric Bény


We propose a method for stably removing noise from measurements of a quantum many-body system. The question is cast to a linear inverse problem by using a quantum Fischer information metric as figure of merit. This requires the ability to compute the adjoint of the noise channel with respect to the metric, which can be done analytically when the metric is evaluated at a Gaussian (quasi-free) state. This approach can be applied effectively to n-point functions of a quantum field theory. For translation invariant noise, this yields a stable deconvolution method on the first moments of the field which differs from what one would obtain from a purely classical analysis.


Quantum tomography Quantum Fischer information Gaussian channel Channel reversal Quantum field theory 



This work was supported by the research fund of Hanyang University (HY-2016-2237).


  1. 1.
    Ferrie, C., Blume-Kohout, R.: Estimating the bias of a noisy coin. In: AIP Conference Proceedings 31st, vol. 1443, pp. 14–21. AIP (2012). arXiv:1201.1493
  2. 2.
    Bény, C., Osborne, T.J.: The renormalization group via statistical inference. New J. Phys. 17, 083005 (2015). arXiv:1402.4949 MathSciNetCrossRefGoogle Scholar
  3. 3.
    Bény, C.: Coarse-grained distinguishability of field interactions. (2015). arXiv:1509.03249
  4. 4.
    Petz, D.: Monotone metrics on matrix spaces. Linear Algebra Appl. 244, 81 (1996)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Petz, D.: A dual in von Neumann algebras with weights. Q. J. Math. 35, 475 (1984)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Lami, L., Das, S., Wilde, M.M.: Approximate reversal of quantum Gaussian dynamics. (2017). arXiv:1702.04737
  7. 7.
    Gonzalez, R.C.E., Woods, S.L., Gonzalez, R.E.R.E.R.C., Woods, R.E., Eddins, S.L.: Digital image processing using MATLAB, 04; TA1637, G6 (2004)Google Scholar
  8. 8.
    Petz, D.: Sufficiency of channels over von Neumann algebras. Q. J. Math. 39, 97 (1988)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Barnum, H., Knill, E.: Reversing quantum dynamics with near-optimal quantum and classical fidelity. J. Math. Phys. 43, 2097 (2002). arXiv:quant-ph/0004088 ADSMathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Fawzi, O., Renner, R.: Quantum conditional mutual information and approximate Markov chains. Commun. Math. Phys. 340, 575 (2015). arXiv:1410.0664 ADSMathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Junge, M., Renner, R., Sutter, D., Wilde, M.M., Winter, A.: Universal recoverability in quantum information. In: 2016 IEEE International Symposium on Information Theory (ISIT), pp. 2494–2498. IEEE (2016)Google Scholar
  12. 12.
    Sutter, D., Tomamichel, M., Harrow, A.W.: Strengthened monotonicity of relative entropy via pinched Petz recovery map. IEEE Trans. Inf. Theory 62, 2907 (2016). arXiv:1507.00303 MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Department of Applied MathematicsHanyang University (ERICA)AnsanKorea

Personalised recommendations