Skip to main content
Log in

Comment on “A practical protocol for three-party authenticated quantum key distribution”

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Guan et al. (Quantum Inf Process 13(11):2355–2374, 2014) proposed a three-party authenticated quantum key distribution protocol which allows two participants to authenticate each other and eventually share a session key between them with the help of a trusted center (TC), who has pre-shared a master key with each participant, respectively. After a successful authentication and key distribution process, TC and the participants update their master keys, respectively. However, this study points out that Guan et al.’s scheme suffers from the intercept-and-measure attack and information leakage problem, and has the synchronization problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bennett, Ch.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. In: International in Conference on Computers, Systems and Signal Processing, Bangalore, India, December 1984

  2. Bennett, C.H.: Quantum cryptography using any two nonorthogonal states. Phys. Rev. Lett. 68(21), 3121 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Long, G.-L., Liu, X.-S.: Theoretically efficient high-capacity quantum-key-distribution scheme. Phys. Rev. A 65(3), 032302 (2002)

    Article  ADS  Google Scholar 

  4. Li, C., et al.: A random quantum key distribution achieved by using Bell states. J. Opt. B Quantum Semiclassical Opt. 5(2), 155 (2003)

    Article  ADS  Google Scholar 

  5. Song, D.: Secure key distribution by swapping quantum entanglement. Phys. Rev. A 69(3), 034301 (2004)

    Article  ADS  Google Scholar 

  6. Namiki, R., Hirano, T.: Efficient-phase-encoding protocols for continuous-variable quantum key distribution using coherent states and postselection. Phys. Rev. A 74(3), 032302 (2006)

    Article  ADS  Google Scholar 

  7. Hwang, T., Lee, K.-C.: EPR quantum key distribution protocols with potential 100% qubit efficiency. Information Security, IET 1(1), 43–45 (2007)

    Article  Google Scholar 

  8. Hwang, T., Lee, K.-C., Li, C.-M.: Provably secure three-party authenticated quantum key distribution protocols. Dependable Secur. Comput. IEEE Trans. 4(1), 71–80 (2007)

    Article  Google Scholar 

  9. Gan, G.: Quantum key distribution scheme with high efficiency. Commun. Theor. Phys. 51(5), 820 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Zeng, G., Zhang, W.: Identity verification in quantum key distribution. Phys. Rev. A 61(2), 022303 (2000)

    Article  ADS  Google Scholar 

  11. Wegman, M.N., Carter, J.L.: New hash functions and their use in authentication and set equality. J. Comput. Syst. Sci. 22(3), 265–279 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  12. Guan, D.-J., Wang, Y.-J., Zhuang, E.: A practical protocol for three-party authenticated quantum key distribution. Quantum Inf. Process. 13(11), 2355–2374 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  13. Buhrman, H., et al.: Quantum fingerprinting. Phys. Rev. Lett. 87(16), 167902 (2001)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We would like to thank the Ministry of Science and Technology of Republic of China for financial support of this research under Contract No. MOST 105-2221-E-006-162-MY2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tzonelih Hwang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, YP., Chou, WH. & Hwang, T. Comment on “A practical protocol for three-party authenticated quantum key distribution”. Quantum Inf Process 16, 119 (2017). https://doi.org/10.1007/s11128-017-1566-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-017-1566-2

Keywords

Navigation