Comment on “A practical protocol for three-party authenticated quantum key distribution”



Guan et al. (Quantum Inf Process 13(11):2355–2374, 2014) proposed a three-party authenticated quantum key distribution protocol which allows two participants to authenticate each other and eventually share a session key between them with the help of a trusted center (TC), who has pre-shared a master key with each participant, respectively. After a successful authentication and key distribution process, TC and the participants update their master keys, respectively. However, this study points out that Guan et al.’s scheme suffers from the intercept-and-measure attack and information leakage problem, and has the synchronization problem.


Quantum key distribution Authentication Information leakage Intercept-and-measure attack Synchronization Quantum fingerprinting 



We would like to thank the Ministry of Science and Technology of Republic of China for financial support of this research under Contract No. MOST 105-2221-E-006-162-MY2.


  1. 1.
    Bennett, Ch.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. In: International in Conference on Computers, Systems and Signal Processing, Bangalore, India, December 1984Google Scholar
  2. 2.
    Bennett, C.H.: Quantum cryptography using any two nonorthogonal states. Phys. Rev. Lett. 68(21), 3121 (1992)ADSMathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Long, G.-L., Liu, X.-S.: Theoretically efficient high-capacity quantum-key-distribution scheme. Phys. Rev. A 65(3), 032302 (2002)ADSCrossRefGoogle Scholar
  4. 4.
    Li, C., et al.: A random quantum key distribution achieved by using Bell states. J. Opt. B Quantum Semiclassical Opt. 5(2), 155 (2003)ADSCrossRefGoogle Scholar
  5. 5.
    Song, D.: Secure key distribution by swapping quantum entanglement. Phys. Rev. A 69(3), 034301 (2004)ADSCrossRefGoogle Scholar
  6. 6.
    Namiki, R., Hirano, T.: Efficient-phase-encoding protocols for continuous-variable quantum key distribution using coherent states and postselection. Phys. Rev. A 74(3), 032302 (2006)ADSCrossRefGoogle Scholar
  7. 7.
    Hwang, T., Lee, K.-C.: EPR quantum key distribution protocols with potential 100% qubit efficiency. Information Security, IET 1(1), 43–45 (2007)CrossRefGoogle Scholar
  8. 8.
    Hwang, T., Lee, K.-C., Li, C.-M.: Provably secure three-party authenticated quantum key distribution protocols. Dependable Secur. Comput. IEEE Trans. 4(1), 71–80 (2007)CrossRefGoogle Scholar
  9. 9.
    Gan, G.: Quantum key distribution scheme with high efficiency. Commun. Theor. Phys. 51(5), 820 (2009)ADSMathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    Zeng, G., Zhang, W.: Identity verification in quantum key distribution. Phys. Rev. A 61(2), 022303 (2000)ADSCrossRefGoogle Scholar
  11. 11.
    Wegman, M.N., Carter, J.L.: New hash functions and their use in authentication and set equality. J. Comput. Syst. Sci. 22(3), 265–279 (1981)MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    Guan, D.-J., Wang, Y.-J., Zhuang, E.: A practical protocol for three-party authenticated quantum key distribution. Quantum Inf. Process. 13(11), 2355–2374 (2014)MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    Buhrman, H., et al.: Quantum fingerprinting. Phys. Rev. Lett. 87(16), 167902 (2001)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Institute for Information Industry, CyberTrust Technology InstituteTaipeiTaiwan, ROC
  2. 2.Department of Computer Science and Information EngineeringNational Cheng Kung UniversityTainan CityTaiwan, ROC

Personalised recommendations