Skip to main content
Log in

Temporal correlations and device-independent randomness

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Leggett–Garg inequalities (LGI) are constraints on certain combinations of temporal correlations obtained by measuring one and the same system at two different instants of time. The usual derivations of LGI assume macroscopic realism per se and noninvasive measurability. We derive these inequalities under a different set of assumptions, namely the assumptions of predictability and no signaling in time (NSIT). As a novel implication of this derivation, we find application of LGI in randomness certification. It turns out that randomness can be certified from temporal correlations, even without knowing the details of the experimental devices, provided the observed correlations violate LGI but satisfy NSIT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. In the present context, this postulate says that properties of an ensemble are determined exclusively by initial conditions and cannot be affected by final conditions.

  2. In Bell scenario, similar kind of assumption has been considered by Cavalcanti et al. [30]. In their case, the assumption is concerned about the joint conditional probabilities for measurements performed on different systems, whereas in our case it is about the joint conditional probabilities for different measurements performed at different times but on a single and the same system.

  3. One may of course choose \(A = B\) and measure the same observable twice.

  4. Once the factorizability is achieved, the postulate of induction is further used in calculating the correlation between measurement outcomes at two other different times. It allows one to freely choose the measurement times, independent of the properties of the initially prepared state.

  5. For the Leggett–Garg function \(f^{LG}_4\), the associated randomness can also be obtained in a closed form as \(H_{\infty }(Q_{{\mathcal {T}}_{\alpha }},Q_{{\mathcal {T}}_{\beta }})\ge -\log _2(\frac{3}{2}-\frac{2+\epsilon }{4})\) (cf. Fig 1). The calculation is similar to Ref. [35], but the context is different here. While in [35], correlations between measurement results from two distantly located physical systems are considered; here the focus is on one and the same physical system to obtain the correlations between measurement outcomes at two different times.

  6. It would be worth mentioning here that like Bell’s scenario, in the case of temporal correlations too, we need some amount of seed randomness at the input. This is needed for freely choosing the measurement times.

References

  1. Leggett, A.J., Garg, A.: Quantum mechanics versus macroscopic realism: Is the flux there when nobody looks? Phys. Rev. Lett. 54, 857 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  2. Benatti, F., Ghirardi, G., Grassi, R.: Testing macroscopic quantum coherence. II Nuovo Cimento B 110, 593–610 (1995)

    Article  ADS  Google Scholar 

  3. Leggett, A.J.: Realism and the physical world. Rep. Prog. Phys. 71, 022001 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  4. Kofler, J., Brukner, C.: Conditions for quantum violation of macroscopic realism. Phys. Rev. Lett. 101, 090403 (2008)

    Article  ADS  Google Scholar 

  5. Kofler, J., Brukner, C.: Condition for macroscopic realism beyond the Leggett–Garg inequalities. Phys. Rev. A 87, 052115 (2013)

    Article  ADS  Google Scholar 

  6. Ballentine, L.E.: Realism and quantum flux tunneling. Phys. Rev. Lett. 59, 1493 (1987)

    Article  ADS  Google Scholar 

  7. Cliffton, R.: Symposium on the Foundations of Modern Physics. World Scientific, Singapore (1990)

    Google Scholar 

  8. Foster, S., Elby, A.: A SQUID no-go theorem without macrorealism: What SQUID’s really tell us about nature. Found. Phys. 21, 773 (1991)

    Article  ADS  Google Scholar 

  9. Elby, A., Foster, S.: Why SQUID experiments can rule out non-invasive measurability. Phys. Lett. A 166, 17–23 (1992)

    Article  ADS  Google Scholar 

  10. Jordan, A., Korotkov, A., Buttiker, M.: Leggett–Garg inequality with a kicked quantum pump. Phys. Rev. Lett. 97, 026805 (2006)

    Article  ADS  Google Scholar 

  11. Williams, N.S., Jordan, A.N.: Weak values and the Leggett–Garg inequality in solid-state qubits. Phys. Rev. Lett. 100, 026804 (2008)

    Article  ADS  Google Scholar 

  12. Palacios-Laloy, A., et al.: Experimental violation of a Bells inequality in time with weak measurement. Nat. Phys. 6, 442 (2010)

    Article  Google Scholar 

  13. Dressel, J., Broadbent, C., Howell, J., Jordan, A.: Experimental violation of two-party Leggett–Garg inequalities with semiweak measurements. Phys. Rev. Lett. 106, 040402 (2011)

    Article  ADS  Google Scholar 

  14. Goggin, M.E., et al.: Violation of the Leggett–Garg inequality with weak measurements of photons. Proc. Natl. Acad. Sci. USA 108, 1256–1261 (2011)

    Article  ADS  Google Scholar 

  15. Souza, A.M., Oliveira, I.S., Sarthour, R.S.: A scattering quantum circuit for measuring Bell’s time inequality: a nuclear magnetic resonance demonstration using maximally mixed states. New J. Phys. 13, 053023 (2011)

    Article  ADS  Google Scholar 

  16. Athalye, V., Roy, S.S., Mahesh, T.S.: Investigation of the Leggett–Garg inequality for precessing nuclear spins. Phys. Rev. Lett. 107, 130402 (2011)

    Article  ADS  Google Scholar 

  17. Knee, G.C., et al.: Violation of a Leggett–Garg inequality with ideal non-invasive measurements. Nat. Commun. 3, 606 (2012)

    Article  ADS  Google Scholar 

  18. Wilde, M., Mizel, A.: Addressing the clumsiness loophole in a Leggett–Garg test of macrorealism. Found. Phys. 42, 256–265 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Suzuki, Y., Iinuma, M., Hofmann, H.F.: Violation of Leggett–Garg inequalities in quantum measurements with variable resolution and back-action. New J. Phys. 14, 103022 (2012)

    Article  Google Scholar 

  20. Devi, Usha, Karthik, A.R., Sudha, H.S., Rajagopal, A.K.: Macrorealism from entropic Leggett–Garg inequalities. Phys. Rev. A 87, 052103 (2013)

    Article  ADS  Google Scholar 

  21. Groen, J.P., et al.: Partial-measurement backaction and nonclassical weak values in a superconducting circuit. Phys. Rev. Lett. 111, 090506 (2013)

    Article  ADS  Google Scholar 

  22. Emary, C., Lambert, N., Nori, F.: Leggett–Garg inequalities. Rep. Prog. Phys. 77, 016001 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  23. Leggett, A.J., Garg, A.: Comment on realism and quantum flux tunneling. Phys. Rev. Lett. 59, 1621 (1987)

    Article  ADS  Google Scholar 

  24. Leggett, A.J.: Experimental approaches to the quantum measurement paradox. Found Phys. 18, 939–952 (1988)

    Article  ADS  Google Scholar 

  25. Maroney, O. J. E.: Detectability, Invasiveness and the Quantum Three Box Paradox. arXiv:1207.3114

  26. Leggett, A.J.: (Festschrift for David Bohm) (1987), eds. B. J. Hiley and D. Peat (Routledge and Kegan Paul)

  27. Wilde, M., Mizel, A.: Addressing the clumsiness loophole in a Leggett–Garg Test of macrorealism. Found. Phys. 42, 256 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. Foster, S., Elby, A.: A SQUID No-Go theorem without macrorealism: What SQUID’s really tell us about nature. Found. Phys. 21, 773 (1991)

    Article  ADS  Google Scholar 

  29. Benatti, F., Ghirardi, G.C., Grassi, R.: On some recent proposals for testing macrorealism versus quantum mechanics. Found. Phys. Lett. 7, 105–126 (1994)

    Article  MathSciNet  Google Scholar 

  30. Cavalcanti, E.G., Wiseman, H.M.: Bell nonlocality, signal locality and unpredictability (or what Bohr could have told einstein at Solvay had he known about Bell experiments). Found. Phys. 42, 1329–1338 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. Knuth, D.: The Art of Computer Programming. Semi-numerical Algorithms, vol. 2. Addison-Wesley, Boston (1981)

    Google Scholar 

  32. Jennewein, T., Achleitner, U., Weihs, G., Weinfurter, H., Zeilinger, A.: A fast and compact quantum random number generator. Rev. Sci. Instrum. 71, 1675 (2000)

    Article  ADS  Google Scholar 

  33. Stefanov, A., Gisin, N., Guinnard, O., Guinnard, L., Zbinden, H.: Optical quantum random number generator. J. Mod. Opt. 47, 595–598 (2000)

    ADS  Google Scholar 

  34. Atsushi, U., et al.: Fast physical random bit generation with chaotic semiconductor lasers. Nat. Photon. 2, 728–732 (2008)

    Article  Google Scholar 

  35. Pironio, S., et al.: Random numbers certified by Bells theorem. Nature (London) 464, 1021–1024 (2010)

    Article  ADS  Google Scholar 

  36. Acin, A., Massar, S., Pironio, S.: Randomness versus nonlocality and entanglement. Phys. Rev. Lett. 108, 100402 (2012)

    Article  ADS  Google Scholar 

  37. Dhara, C., Torre, G., Acin, A.: Can observed randomness be certified to be fully intrinsic? Phys. Rev. Lett. 112, 100402 (2014)

    Article  ADS  Google Scholar 

  38. Torre, G., Hoban, M.J., Dhara, C., Prettico, G., Acin, A.: Maximally nonlocal theories cannot be maximally random. arXiv:1403.3357 (2014)

  39. Scarani, V.: The device-independent outlook on quantum physics (Lecture notes on the power of Bell’s theorem). arXiv:1303.3081

  40. Chaturvedi, A., Banik, M.: Measurement-device-independent randomness from local entangled states. arXiv:1401.1338

  41. Popescu, S., Rohrlich, D.: Quantum nonlocality as an axiom. Fond. Phys. 24, 379–385 (1994)

    Article  ADS  MathSciNet  Google Scholar 

  42. Spekkens, R.W.: Contextuality for preparations, transformations, and unsharp measurements. Phys. Rev. A 71, 052108 (2005)

    Article  ADS  Google Scholar 

  43. Harrigan, N., Rudolph, T.: Ontological models and the interpretation of contextuality. arXiv:0709.4266

  44. Clauser, J.F., Horne, M.A., Shimony, A., Holt, R.A.: Proposed experiment to test local hidden-variable theories. Phys. Rev. Lett. 23, 880 (1969)

    Article  ADS  Google Scholar 

  45. Wigner, E.P.: On hidden variables and quantum mechanical probabilities. Am. J. Phys. 38, 1005 (1970)

    Article  ADS  Google Scholar 

  46. Yearsley, J. M.: The Leggett–Garg inequalities and non-invasive measurability. arXiv:1310.2149

  47. Barbieri, M.: Multiple-measurement Leggett–Garg inequalities. Phys. Rev. A 80, 034102 (2009)

    Article  ADS  Google Scholar 

  48. Koenig, R., Renner, R., Schaffner, C.: The operational meaning of min- and max-entropy. IEEE Trans. Inf. Theory 55, 4337 (2009)

    Article  MathSciNet  Google Scholar 

  49. Bell, J.S.: On the Einstein Podolsky Rosen paradox. Physics 1, 195–200 (1964)

    Google Scholar 

  50. Bell, J.S.: On the problem of hidden variables in quantum mechanics. Rev. Mod. Phys. 38, 447 (1966)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  51. Brunner, N., Cavalcanti, D., Pironio, S., Scarani, V., Wehner, S.: Bell nonlocality. Rev. Mod. Phys. 86, 419 (2014)

    Article  ADS  Google Scholar 

  52. Kochen, S., Specker, E.: The problem of hidden of variables in quantum mechanics. J. Math. Mech. 17, 59–87 (1967)

    MathSciNet  MATH  Google Scholar 

  53. Cirelson, B.S.: Quantum generalizations of Bell’s inequality. Lett. Math. Phys. 4, 93–100 (1980)

    Article  ADS  MathSciNet  Google Scholar 

  54. Budroni, C., Moroder, T., Kleinmann, M., Gühne, O.: Bounding temporal quantum correlations. Phys. Rev. Lett. 111, 020403 (2013)

    Article  ADS  Google Scholar 

  55. Budroni, C., Emary, C.: Temporal quantum correlations and Leggett–Garg inequalities in multilevel systems. Phys. Rev. Lett. 113, 050401 (2014)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

S.K.C. acknowledges fruitful discussions with Pankaj Agrawal. We also thank Guruprasad Kar for stimulating discussions. MB thankfully acknowledges comments from C. Brukner, C. Emary and A. J. Leggett. S.K.C. acknowledges support from the Council of Scientific and Industrial Research, Government of India (Scientists’ Pool Scheme). SM acknowledges support from the DST project SR/S2/PU-16/2007.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shiladitya Mal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mal, S., Banik, M. & Choudhary, S.K. Temporal correlations and device-independent randomness. Quantum Inf Process 15, 2993–3004 (2016). https://doi.org/10.1007/s11128-016-1321-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-016-1321-0

Keywords

Navigation