Skip to main content
Log in

Swiveled Rényi entropies

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

This paper introduces “swiveled Rényi entropies” as an alternative to the Rényi entropic quantities put forward in Berta et al. (Phys Rev A 91(2):022333, 2015). What distinguishes the swiveled Rényi entropies from the prior proposal of Berta et al. is that there is an extra degree of freedom: an optimization over unitary rotations with respect to particular fixed bases (swivels). A consequence of this extra degree of freedom is that the swiveled Rényi entropies are ordered, which is an important property of the Rényi family of entropies. The swiveled Rényi entropies are, however, generally discontinuous at \(\alpha =1\) and do not converge to the von Neumann entropy-based measures in the limit as \(\alpha \rightarrow 1\), instead bounding them from above and below. Particular variants reduce to known Rényi entropies, such as the Rényi relative entropy or the sandwiched Rényi relative entropy, but also lead to ordered Rényi conditional mutual information and ordered Rényi generalizations of a relative entropy difference. Refinements of entropy inequalities such as monotonicity of quantum relative entropy and strong subadditivity follow as a consequence of the aforementioned properties of the swiveled Rényi entropies. Due to the lack of convergence at \(\alpha =1\), it is unclear whether the swiveled Rényi entropies would be useful in one-shot information theory, so that the present contribution represents partial progress toward this goal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. A “ swivel” is a coupling placed between two objects in a chain in order to allow for them to “ swivel” about a given axis.

  2. A map \(G:S\rightarrow L(\mathcal {H})\) is holomorphic (continuous, bounded) if the corresponding functions to matrix entries are holomorphic (continuous, bounded).

References

  1. Barnum, H., Knill, E.: Reversing quantum dynamics with near-optimal quantum and classical fidelity. J. Math. Phys. 43(5), 2097–2106 (2002). arXiv:quant-ph/0004088

  2. Beigi, S.: Sandwiched Rényi divergence satisfies data processing inequality. J. Math. Phys. 54(12), 122202 (2013). arXiv:1306.5920

  3. Bergh, J., Löfström, J.: Interpolation Spaces. Springer, Berlin (1976)

    Book  MATH  Google Scholar 

  4. Berta, M., Lemm, M., Wilde, M.M.: Monotonicity of quantum relative entropy and recoverability. Quantum Inf. Comput. 15(15 & 16), 1333–1354 (2015). arXiv:1412.4067

  5. Berta, M., Seshadreesan, K., Wilde, M.M.: Rényi generalizations of the conditional quantum mutual information. J. Math. Phys. 56(2), 022205 (2015). arXiv:1403.6102

  6. Berta, M., Seshadreesan, K.P., Wilde, M.M.: Rényi generalizations of quantum information measures. Phys. Rev. A 91(2), 022333 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Christandl, M., Winter, A.: “Squashed entanglement”: an additive entanglement measure. J. Math. Phys. 45(3), 829–840 (2004). arXiv:quant-ph/0308088

  8. Coles, P.J., Berta, M., Tomamichel, M., Wehner, S.: Entropic uncertainty relations and their applications (2015). arXiv:1511.04857

  9. Cooney, T., Mosonyi, M., Wilde, M.M.: Strong converse exponents for a quantum channel discrimination problem and quantum-feedback-assisted communication (2014). arXiv:1408.3373

  10. Csiszár, I.: Generalized cutoff rates and Rényi’s information measures. IEEE Trans. Inf. Theory 41(1), 26–34 (1995)

    Article  MATH  Google Scholar 

  11. Datta, N.: Min- and max-relative entropies and a new entanglement monotone. IEEE Trans. Inf. Theory 55(6), 2816–2826 (2009). arXiv:0803.2770

  12. Datta, N., Wilde, M.M.: Quantum Markov chains, sufficiency of quantum channels, and Rényi information measures. J. Phys. A: Math. Theor. 48(50), 505301 (2015). arXiv:1501.05636

  13. Dupuis, F.: Chain rules for quantum Rényi entropies. J. Math. Phys. 56(2), 022203 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Dupuis, F., Fawzi, O., Wehner, S.: Entanglement sampling and applications. IEEE Trans. Inf. Theory 61(2), 1093–1112 (2015). arXiv:1305.1316

  15. Dupuis, F., Kramer, L., Faist, P., Renes, J.M., Renner, R.: Proceedings of the XVIIth International Congress on Mathematical Physics, chapter Generalized Entropies, pp. 134–153. World Scientific (2012). arXiv:1211.3141

  16. van Erven, T., Harremoes, P.: Rényi divergence and Kullback-Leibler divergence. IEEE Trans. Inf. Theory 60(7), 3797–3820 (2014). arXiv:1206.2459

  17. Fawzi, O., Renner, R.: Quantum conditional mutual information and approximate Markov chains. Commun. Math. Phys. 340(2), 575–611 (2015). arXiv:1410.0664

  18. Frank, R.L., Lieb, E.H.: Monotonicity of a relative Rényi entropy. J. Math. Phys. 54(12), 122201 (2013). arXiv:1306.5358

  19. Hirschman, I.I.: A convexity theorem for certain groups of transformations. J. Anal. Math. 2(2), 209–218 (1952)

    Article  MathSciNet  MATH  Google Scholar 

  20. Junge, M., Renner, R., Sutter, D., Wilde, M.M., Winter, A.: Universal recovery from a decrease of quantum relative entropy (2015). arXiv:1509.07127

  21. Li, K., Winter, A.: Squashed entanglement, \(k\)-extendibility, quantum Markov chains, and recovery maps (2014). arXiv:1410.4184

  22. Lieb, E.H., Ruskai, M.B.: A fundamental property of quantum-mechanical entropy. Phys. Rev. Lett. 30(10), 434–436 (1973)

    Article  ADS  MathSciNet  Google Scholar 

  23. Lieb, E.H., Ruskai, M.B.: Proof of the strong subadditivity of quantum-mechanical entropy. J. Math. Phys. 14(12), 1938–1941 (1973)

    Article  ADS  MathSciNet  Google Scholar 

  24. Lindblad, G.: Completely positive maps and entropy inequalities. Commun. Math. Phys. 40(2), 147–151 (1975)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. Linden, N., Mosonyi, M., Winter, A.: The structure of Rényi entropic inequalities. Proc. R. Soc. A: Math., Phys. Eng. Sci. 469(2158), 20120,737 (2013). arXiv:1212.0248

  26. Müller-Lennert, M., Dupuis, F., Szehr, O., Fehr, S., Tomamichel, M.: On quantum Rényi entropies: a new definition and some properties. J. Math. Phys. 54(12), 122203 (2013). arXiv:1306.3142

  27. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information, 10th Anniversary Edition. Cambridge University Press, Cambridge (2010)

    Book  MATH  Google Scholar 

  28. Petz, D.: Quasi-entropies for finite quantum systems. Rep. Math. Phys. 23(1), 57–65 (1986)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. Petz, D.: Sufficient subalgebras and the relative entropy of states of a von Neumann algebra. Commun. Math. Phys. 105(1), 123–131 (1986)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. Petz, D.: Sufficiency of channels over von Neumann algebras. Q. J. Math. 39(1), 97–108 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  31. Reed, M., Simon, B.: Methods of Modern Mathematical Physics II: Fourier Analysis, Self-Adjointness. Academic Press, New York (1975)

    MATH  Google Scholar 

  32. Renner, R.: Security of quantum key distribution. Ph.D. thesis, ETH Zürich (2005). arXiv:quant-ph/0512258

  33. Renner, R., Wolf, S.: Smooth Rényi entropy and applications. In: Proceedings of the 2007 International Symposium on Information Theory, p. 232, (2004). http://www.ti.inf.ethz.ch/sw/publications/smooth.ps

  34. Rényi, A.: On measures of entropy and information. Proceedings of the 4th Berkeley Symposium on Mathematics, Statistics and Probability 1, pp. 547–561 (1961). Held at the Statistical Laboratory, University of California, 1960, J. Neyman (ed.) (University of California Press, Berkeley)

  35. Seshadreesan, K.P., Berta, M., Wilde, M.M.: Rényi squashed entanglement, discord, and relative entropy differences. J. Phys. A: Math. Theor. 48(39), 395303 (2015). arXiv:1410.1443

  36. Sutter, D., Fawzi, O., Renner, R.: Universal recovery map for approximate Markov chains (2015). arXiv:1504.07251

  37. Suzuki, M.: Transfer-matrix method and Monte Carlo simulation in quantum spin systems. Phys. Rev. B 31(5), 2957 (1985)

    Article  ADS  Google Scholar 

  38. Tomamichel, M.: A framework for non-asymptotic quantum information theory. Ph.D. thesis, ETH Zurich (2012). arXiv:1203.2142

  39. Tomamichel, M.: Quantum Information Processing with Finite Resources—Mathematical Foundations. SpringerBriefs in Mathematical Physics. Springer, (2015). arXiv:1504.00233

  40. Uhlmann, A.: The “transition probability” in the state space of a *-algebra. Rep. Math. Phys. 9(2), 273–279 (1976)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  41. Uhlmann, A.: Relative entropy and the Wigner-Yanase-Dyson-Lieb concavity in an interpolation theory. Commun. Math. Phys. 54(1), 21–32 (1977). http://projecteuclid.org/euclid.cmp/1103900757

  42. Umegaki, H.: Conditional expectations in an operator algebra IV (entropy and information). Kodai Math. Semin. Rep. 14(2), 59–85 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  43. Wilde, M.M.: Quantum Inf. Theory. Cambridge University Press, Cambridge (2013). arXiv:1106.1445

  44. Wilde, M.M.: Multipartite quantum correlations and local recoverability. Proc. R. Soc. A 471, 20140,941 (2014). arXiv:1412.0333

  45. Wilde, M.M.: Recoverability in quantum information theory. Proc. R. Soc. A 471(2182), 20150,338 (2015). arXiv:1505.04661

  46. Wilde, M.M., Winter, A., Yang, D.: Strong converse for the classical capacity of entanglement-breaking and Hadamard channels via a sandwiched Rényi relative entropy. Commun. Math. Phys. 331(2), 593–622 (2014). arXiv:1306.1586

  47. Zhang, L.: A stronger monotonicity inequality of quantum relative entropy: a unifying approach via Rényi relative entropy (2014). arXiv:1403.5343v1

Download references

Acknowledgments

We are grateful to Salman Beigi for insightful discussions about the topic of this paper. FD acknowledges the support of the Czech Science Foundation GA CR Project P202/12/1142 and the support of the EU FP7 under Grant Agreement No 323970 (RAQUEL). MMW is grateful to Stephanie Wehner and her group for hospitality during a research visit to TU Delft (May 2015), to Renato Renner and his group for the same during a visit to ETH Zurich (June 2015), and acknowledges support from startup funds from the Department of Physics and Astronomy at LSU, the NSF under Award No. CCF-1350397, and the DARPA Quiness Program through US Army Research Office Award W31P4Q-12-1-0019.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark M. Wilde.

Appendices

Appendix 1: Limit as \(\alpha \rightarrow 1\)

Definition 6

Let \(\rho \), \(\sigma \), and \(\mathcal {N}\) be as given in Definition 1. For \(\alpha \in \left( 0,1\right) \cup \left( 1,\infty \right) \), let

$$\begin{aligned} \Delta _{\alpha }(\rho ,\sigma ,\mathcal {N})=\frac{1}{\alpha -1}\log Q_{\alpha }(\rho ,\sigma ,\mathcal {N}), \end{aligned}$$
(208)

where

$$\begin{aligned} Q_{\alpha }(\rho ,\sigma ,\mathcal {N})\equiv \left\| \left( \mathcal {N} (\rho )^{\left( 1-\alpha \right) /2}\mathcal {N}(\sigma )^{\left( \alpha -1\right) /2}\otimes I_{E}\right) U\sigma ^{\left( 1-\alpha \right) /2}\rho ^{\alpha /2}\right\| _{2}^{2}. \end{aligned}$$
(209)

Theorem 5

Let \(\rho \), \(\sigma \), and \(\mathcal {N}\) be as given in Definition 1 and such that \({\text {supp}} (\rho )\subseteq {\text {supp}}(\sigma )\). The following limit holds

$$\begin{aligned} \lim _{\alpha \rightarrow 1}\Delta _{\alpha }(\rho ,\sigma ,\mathcal {N})=D(\rho \Vert \sigma )-D\left( \mathcal {N}(\rho )\Vert \mathcal {N}(\sigma )\right) . \end{aligned}$$
(210)

Proof

Let \(\varPi _{\omega }\) denote the projection onto the support of \(\omega \). From the condition \({\text {supp}}(\rho )\subseteq {\text {supp}}(\sigma )\), it follows that \({\text {supp}}\left( \mathcal {N}(\rho )\right) \subseteq {\text {supp}}\left( \mathcal {N}(\sigma )\right) \) [32, Appendix B.4]. We can then conclude that

$$\begin{aligned} \varPi _{\sigma }\varPi _{\rho }=\varPi _{\rho },\qquad \varPi _{\mathcal {N}(\rho )} \varPi _{\mathcal {N}(\sigma )}=\varPi _{\mathcal {N}(\rho )}. \end{aligned}$$
(211)

We also know that \({\text {supp}}\left( U\rho U^{\dag }\right) \subseteq {\text {supp}}\left( \mathcal {N}(\rho )\otimes I_{E}\right) \) [32, Appendix B.4], so that

$$\begin{aligned} \left( \varPi _{\mathcal {N}(\rho )}\otimes I_{E}\right) \varPi _{U\rho U^{\dag }} =\varPi _{U\rho U^{\dag }}. \end{aligned}$$
(212)

When \(\alpha =1\), we find from the above facts that

$$\begin{aligned} Q_{1}(\rho ,\sigma ,\mathcal {N})&=\left\| \left( \varPi _{\mathcal {N}(\rho )}\varPi _{\mathcal {N}(\sigma )}\otimes I_{E}\right) U\varPi _{\sigma }\rho ^{1/2}\right\| _{2}^{2} \end{aligned}$$
(213)
$$\begin{aligned}&=\left\| \left( \varPi _{\mathcal {N}(\rho )}\otimes I_{E}\right) U\varPi _{\rho }\rho ^{1/2}\right\| _{2}^{2}\end{aligned}$$
(214)
$$\begin{aligned}&=\left\| \left( \varPi _{\mathcal {N}(\rho )}\otimes I_{E}\right) \varPi _{U\rho U^{\dag }}U\rho ^{1/2}\right\| _{2}^{2}\end{aligned}$$
(215)
$$\begin{aligned}&=\left\| \varPi _{U\rho U^{\dag }}U\rho ^{1/2}\right\| _{2}^{2}\end{aligned}$$
(216)
$$\begin{aligned}&=\left\| \rho ^{1/2}\right\| _{2}^{2}\end{aligned}$$
(217)
$$\begin{aligned}&=1. \end{aligned}$$
(218)

So from the definition of the derivative, this means that

$$\begin{aligned} \lim _{\alpha \rightarrow 1}\Delta _{\alpha }(\rho ,\sigma ,\mathcal {N})&=\lim _{\alpha \rightarrow 1}\frac{\log Q_{\alpha }(\rho ,\sigma ,\mathcal {N})-\log Q_{1}(\rho ,\sigma ,\mathcal {N})}{\alpha -1}\end{aligned}$$
(219)
$$\begin{aligned}&=\left. \frac{\hbox {d}}{\hbox {d}\alpha }\left[ \log Q_{\alpha }(\rho ,\sigma ,\mathcal {N})\right] \right| _{\alpha =1}\end{aligned}$$
(220)
$$\begin{aligned}&=\frac{1}{Q_{1}(\rho ,\sigma ,\mathcal {N})}\left. \frac{\hbox {d}}{\hbox {d}\alpha }\left[ Q_{\alpha }(\rho ,\sigma ,\mathcal {N})\right] \right| _{\alpha =1}\end{aligned}$$
(221)
$$\begin{aligned}&=\left. \frac{\hbox {d}}{\hbox {d}\alpha }\left[ Q_{\alpha }(\rho ,\sigma ,\mathcal {N} )\right] \right| _{\alpha =1}. \end{aligned}$$
(222)

Let \(\alpha ^{\prime }\equiv \alpha -1\). Consider that

$$\begin{aligned} Q_{\alpha }(\rho ,\sigma ,\mathcal {N})={\text {Tr}}\left\{ \rho ^{\alpha }\sigma ^{-\alpha ^{\prime }/2}\mathcal {N}^{\dag }\left( \mathcal {N} (\sigma )^{\alpha ^{\prime }/2}\mathcal {N}(\rho )^{-\alpha ^{\prime }} \mathcal {N}(\sigma )^{\alpha ^{\prime }/2}\right) \sigma ^{-\alpha ^{\prime } /2}\right\} . \end{aligned}$$
(223)

Now we calculate \(\frac{\hbox {d}}{\hbox {d}\alpha }Q_{\alpha }(\rho ,\sigma ,\mathcal {N})\):

$$\begin{aligned}&\frac{\hbox {d}}{\hbox {d}\alpha }{\text {Tr}}\left\{ \rho ^{\alpha }\sigma ^{-\alpha ^{\prime }/2}\mathcal {N}^{\dag }\left( \mathcal {N}(\sigma )^{\alpha ^{\prime } /2}\mathcal {N}(\rho )^{-\alpha ^{\prime }}\mathcal {N}(\sigma )^{\alpha ^{\prime } /2}\right) \sigma ^{-\alpha ^{\prime }/2}\right\} \nonumber \\&\quad ={\text {Tr}}\left\{ \left[ \frac{\hbox {d}}{\hbox {d}\alpha }\rho ^{\alpha }\right] \sigma ^{-\alpha ^{\prime }/2}\mathcal {N}^{\dag }\left( \mathcal {N} (\sigma )^{\alpha ^{\prime }/2}\mathcal {N}(\rho )^{-\alpha ^{\prime }} \mathcal {N}(\sigma )^{\alpha ^{\prime }/2}\right) \sigma ^{-\alpha ^{\prime } /2}\right\} \nonumber \\&\quad \quad +\,{\text {Tr}}\left\{ \rho ^{\alpha }\left[ \frac{\hbox {d}}{\hbox {d}\alpha } \sigma ^{-\alpha ^{\prime }/2}\right] \mathcal {N}^{\dag }\left( \mathcal {N} (\sigma )^{\alpha ^{\prime }/2}\mathcal {N}(\rho )^{-\alpha ^{\prime }} \mathcal {N}(\sigma )^{\alpha ^{\prime }/2}\right) \sigma ^{-\alpha ^{\prime } /2}\right\} \nonumber \\&\quad \quad +\,{\text {Tr}}\left\{ \rho ^{\alpha }\sigma ^{-\alpha ^{\prime }/2} \mathcal {N}^{\dag }\left( \left[ \frac{\hbox {d}}{\hbox {d}\alpha }\mathcal {N}(\sigma )^{\alpha ^{\prime }/2}\right] \mathcal {N}(\rho )^{-\alpha ^{\prime }} \mathcal {N}(\sigma )^{\alpha ^{\prime }/2}\right) \sigma ^{-\alpha ^{\prime } /2}\right\} \nonumber \\&\quad \quad +\,{\text {Tr}}\left\{ \rho ^{\alpha }\sigma ^{-\alpha ^{\prime }/2} \mathcal {N}^{\dag }\left( \mathcal {N}(\sigma )^{\alpha ^{\prime }/2}\left[ \frac{\hbox {d}}{\hbox {d}\alpha }\mathcal {N}(\rho )^{-\alpha ^{\prime }}\right] \mathcal {N} (\sigma )^{\alpha ^{\prime }/2}\right) \sigma ^{-\alpha ^{\prime }/2}\right\} \nonumber \\&\quad \quad +\,{\text {Tr}}\left\{ \rho ^{\alpha }\sigma ^{-\alpha ^{\prime }/2} \mathcal {N}^{\dag }\left( \mathcal {N}(\sigma )^{\alpha ^{\prime }/2} \mathcal {N}(\rho )^{-\alpha ^{\prime }}\left[ \frac{\hbox {d}}{\hbox {d}\alpha }\mathcal {N} (\sigma )^{\alpha ^{\prime }/2}\right] \right) \sigma ^{-\alpha ^{\prime } /2}\right\} \nonumber \\&\quad \quad +\,{\text {Tr}}\left\{ \rho ^{\alpha }\sigma ^{-\alpha ^{\prime }/2} \mathcal {N}^{\dag }\left( \mathcal {N}(\sigma )^{\alpha ^{\prime }/2} \mathcal {N}(\rho )^{-\alpha ^{\prime }}\mathcal {N}(\sigma )^{\alpha ^{\prime } /2}\right) \left[ \frac{\hbox {d}}{\hbox {d}\alpha }\sigma ^{-\alpha ^{\prime }/2}\right] \right\} \end{aligned}$$
(224)
$$\begin{aligned}&\quad =\Bigg [{\text {Tr}}\left\{ \rho ^{\alpha }\left[ \log \rho \right] \sigma ^{-\alpha ^{\prime }/2}\mathcal {N}^{\dag }\left( \mathcal {N} (\sigma )^{\alpha ^{\prime }/2}\mathcal {N}(\rho )^{-\alpha ^{\prime }} \mathcal {N}(\sigma )^{\alpha ^{\prime }/2}\right) \sigma ^{-\alpha ^{\prime } /2}\right\} \nonumber \\&\quad \quad -\,\frac{1}{2}{\text {Tr}}\left\{ \rho \left[ \log \sigma \right] \sigma ^{-\alpha ^{\prime }/2}\mathcal {N}^{\dag }\left( \mathcal {N} (\sigma )^{\alpha ^{\prime }/2}\mathcal {N}(\rho )^{-\alpha ^{\prime }} \mathcal {N}(\sigma )^{\alpha ^{\prime }/2}\right) \sigma ^{-\alpha ^{\prime } /2}\right\} \nonumber \\&\quad \quad +\,\frac{1}{2}{\text {Tr}}\left\{ \rho \sigma ^{-\alpha ^{\prime } /2}\mathcal {N}^{\dag }\left( \left[ \log \mathcal {N}(\sigma )\right] \mathcal {N}(\sigma )^{\alpha ^{\prime }/2}\mathcal {N}(\rho )^{-\alpha ^{\prime } }\mathcal {N}(\sigma )^{\alpha ^{\prime }/2}\right) \sigma ^{-\alpha ^{\prime } /2}\right\} \nonumber \\&\quad \quad -\,{\text {Tr}}\left\{ \rho \sigma ^{-\alpha ^{\prime }/2}\mathcal {N}^{\dag }\left( \mathcal {N}(\sigma )^{\alpha ^{\prime }/2}\left[ \log \mathcal {N} (\rho )\right] \mathcal {N}(\rho )^{-\alpha ^{\prime }}\mathcal {N}(\sigma )^{\alpha ^{\prime }/2}\right) \sigma ^{-\alpha ^{\prime }/2}\right\} \nonumber \\&\quad \quad +\,\frac{1}{2}{\text {Tr}}\left\{ \rho \sigma ^{-\alpha ^{\prime } /2}\mathcal {N}^{\dag }\left( \mathcal {N}(\sigma )^{\alpha ^{\prime } /2}\mathcal {N}(\rho )^{-\alpha ^{\prime }}\mathcal {N}(\sigma )^{\alpha ^{\prime } /2}\left[ \log \mathcal {N}(\sigma )\right] \right) \sigma ^{-\alpha ^{\prime }/2}\right\} \nonumber \\&\quad \quad -\,\frac{1}{2}{\text {Tr}}\left\{ \rho \sigma ^{-\alpha ^{\prime } /2}\mathcal {N}^{\dag }\left( \mathcal {N}(\sigma )^{\alpha ^{\prime } /2}\mathcal {N}(\rho )^{-\alpha ^{\prime }}\mathcal {N}(\sigma )^{\alpha ^{\prime } /2}\right) \sigma ^{-\alpha ^{\prime }/2}\left[ \log \sigma \right] \right\} \Bigg ].\nonumber \\ \end{aligned}$$
(225)

Taking the limit as \(\alpha \rightarrow 1\) gives

$$\begin{aligned} \left. \frac{\hbox {d}}{\hbox {d}\alpha }Q_{\alpha }(\rho ,\sigma ,\mathcal {N})\right| _{\alpha =1}= & {} {\text {Tr}}\left\{ \rho \left[ \log \rho \right] \varPi _{\sigma }\mathcal {N}^{\dag }\left( \varPi _{\mathcal {N}(\sigma )}\varPi _{\mathcal {N} (\rho )}\varPi _{\mathcal {N}(\sigma )}\right) \varPi _{\sigma }\right\} \nonumber \\&-\,\frac{1}{2}{\text {Tr}}\left\{ \rho \left[ \log \sigma \right] \varPi _{\sigma }\mathcal {N}^{\dag }\left( \varPi _{\mathcal {N}(\sigma )}\varPi _{\mathcal {N}(\rho )}\varPi _{\mathcal {N}(\sigma )}\right) \varPi _{\sigma }\right\} \nonumber \\&+\,\frac{1}{2}{\text {Tr}}\left\{ \rho \varPi _{\sigma }\mathcal {N}^{\dag }\left( \left[ \log \mathcal {N}(\sigma )\right] \varPi _{\mathcal {N}(\sigma )} \varPi _{\mathcal {N}(\rho )}\varPi _{\mathcal {N}(\sigma )}\right) \varPi _{\sigma }\right\} \nonumber \\&-\,{\text {Tr}}\left\{ \rho \varPi _{\sigma }\mathcal {N}^{\dag }\left( \varPi _{\mathcal {N}(\sigma )}\left[ \log \mathcal {N}(\rho )\right] \varPi _{\mathcal {N}(\rho )}\varPi _{\mathcal {N}(\sigma )}\right) \varPi _{\sigma }\right\} \nonumber \\&+\,\frac{1}{2}{\text {Tr}}\left\{ \rho \varPi _{\sigma }\mathcal {N}^{\dag }\left( \varPi _{\mathcal {N}(\sigma )}\varPi _{\mathcal {N}(\rho )}\varPi _{\mathcal {N} (\sigma )}\left[ \log \mathcal {N}(\sigma )\right] \right) \varPi _{\sigma }\right\} \nonumber \\&-\,\frac{1}{2}{\text {Tr}}\left\{ \rho \varPi _{\sigma }\mathcal {N}^{\dag }\left( \varPi _{\mathcal {N}(\sigma )}\varPi _{\mathcal {N}(\rho )}\varPi _{\mathcal {N} (\sigma )}\right) \left[ \log \sigma \right] \varPi _{\sigma }\right\} .\nonumber \\ \end{aligned}$$
(226)

We now simplify the first four terms and note that the last two are Hermitian conjugates of the second and third:

$$\begin{aligned}&{\text {Tr}}\left\{ \rho \left[ \log \rho \right] \varPi _{\sigma } \mathcal {N}^{\dag }\left( \varPi _{\mathcal {N}(\sigma )}\varPi _{\mathcal {N}(\rho )} \varPi _{\mathcal {N}(\sigma )}\right) \varPi _{\sigma }\right\} ={\text {Tr}} \left\{ \rho \left[ \log \rho \right] \mathcal {N}^{\dag }\left( \varPi _{\mathcal {N}(\rho )}\right) \right\} \nonumber \\&\quad ={\text {Tr}}\left\{ \mathcal {N}\left( \rho \left[ \log \rho \right] \right) \varPi _{\mathcal {N}(\rho )}\right\} ={\text {Tr}}\left\{ U\rho \left[ \log \rho \right] U^{\dag }\left( \varPi _{\mathcal {N}(\rho )}\otimes I_{E}\right) \right\} \nonumber \\&\quad ={\text {Tr}}\left\{ \varPi _{U\rho U^{\dag }}U\rho \left[ \log \rho \right] U^{\dag }\left( \varPi _{\mathcal {N}(\rho )}\otimes I_{E}\right) \right\} ={\text {Tr}}\left\{ \varPi _{U\rho U^{\dag }}U\rho \left[ \log \rho \right] U^{\dag }\right\} \nonumber \\&\quad ={\text {Tr}}\left\{ \rho \left[ \log \rho \right] \right\} , \end{aligned}$$
(227)
$$\begin{aligned}&{\text {Tr}}\left\{ \rho \left[ \log \sigma \right] \varPi _{\sigma }\mathcal {N}^{\dag }\left( \varPi _{\mathcal {N}(\sigma )}\varPi _{\mathcal {N}(\rho )} \varPi _{\mathcal {N}(\sigma )}\right) \varPi _{\sigma }\right\} ={\text {Tr}} \left\{ \rho \left[ \log \sigma \right] \mathcal {N}^{\dag }\left( \varPi _{\mathcal {N}(\rho )}\right) \right\} \nonumber \\&\quad ={\text {Tr}}\left\{ \mathcal {N}\left( \rho \left[ \log \sigma \right] \right) \left( \varPi _{\mathcal {N}(\rho )}\right) \right\} ={\text {Tr}} \left\{ U\rho \left[ \log \sigma \right] U^{\dag }\left( \varPi _{\mathcal {N} (\rho )}\otimes I_{E}\right) \right\} \nonumber \\&\quad ={\text {Tr}}\left\{ \varPi _{U\rho U^{\dag }}U\rho U^{\dag }U\left[ \log \sigma \right] U^{\dag }\left( \varPi _{\mathcal {N}(\rho )}\otimes I_{E}\right) \right\} ={\text {Tr}}\left\{ U\rho U^{\dag }U\left[ \log \sigma \right] U^{\dag }\right\} \nonumber \\&\quad ={\text {Tr}}\left\{ \rho \left[ \log \sigma \right] \right\} , \end{aligned}$$
(228)
$$\begin{aligned}&{Tr}\left\{ \rho \varPi _{\sigma }\mathcal {N}^{\dag }\left( \left[ \log \mathcal {N}(\sigma )\right] \varPi _{\mathcal {N}(\sigma )}\varPi _{\mathcal {N} (\rho )}\varPi _{\mathcal {N}(\sigma )}\right) \varPi _{\sigma }\right\} \nonumber \\&\qquad ={\text {Tr}}\left\{ \rho \mathcal {N}^{\dag }\left( \left[ \log \mathcal {N}(\sigma )\right] \varPi _{\mathcal {N}(\rho )}\right) \right\} \nonumber \\&\quad ={\text {Tr}}\left\{ \mathcal {N}(\rho )\left[ \log \mathcal {N} (\sigma )\right] \varPi _{\mathcal {N}(\rho )}\right\} ={\text {Tr}}\left\{ \mathcal {N}(\rho )\left[ \log \mathcal {N}(\sigma )\right] \right\} , \end{aligned}$$
(229)
$$\begin{aligned}&{Tr}\left\{ \rho \varPi _{\sigma }\mathcal {N}^{\dag }\left( \varPi _{\mathcal {N}(\sigma )}\left[ \log \mathcal {N}(\rho )\right] \varPi _{\mathcal {N}(\rho )}\varPi _{\mathcal {N}(\sigma )}\right) \varPi _{\sigma }\right\} \nonumber \\&\qquad ={\text {Tr}}\left\{ \rho \mathcal {N}^{\dag }\left( \left[ \log \mathcal {N}(\rho )\right] \varPi _{\mathcal {N}(\rho )}\right) \right\} \nonumber \\&\quad ={\text {Tr}}\left\{ \mathcal {N}(\rho )\left( \left[ \log \mathcal {N}(\rho )\right] \varPi _{\mathcal {N}(\rho )}\right) \right\} ={\text {Tr}}\left\{ \mathcal {N}(\rho )\left[ \log \mathcal {N} (\rho )\right] \right\} . \end{aligned}$$
(230)

This then implies that the following equality holds

$$\begin{aligned}&\left. \frac{\hbox {d}}{\hbox {d}\alpha }Q_{\alpha }(\rho ,\sigma ,\mathcal {N})\right| _{\alpha =1}={\text {Tr}}\left\{ \rho \left[ \log \rho \right] \right\} -{\text {Tr}}\left\{ \rho \left[ \log \sigma \right] \right\} \nonumber \\&\quad +{\text {Tr}}\left\{ \mathcal {N}(\rho )\left[ \log \mathcal {N} (\sigma )\right] \right\} -{\text {Tr}}\left\{ \mathcal {N}(\rho )\left[ \log \mathcal {N}(\rho )\right] \right\} . \end{aligned}$$
(231)

Putting together (222) and (231), we can then conclude the statement of the theorem.

Appendix 2: Auxiliary lemmas and proofs

Lemma 1

Let \(\mathcal {A}\) and \(\mathcal {T}\) be compact metric spaces, and let \(f:\mathcal {A}\times \mathcal {T}\rightarrow \mathbb {R}\) be a continuous function. Then, \(g,h:\mathcal {A}\rightarrow \mathbb {R}\), defined as \(g(\alpha )=\max _{t\in \mathcal {T}}f(\alpha ,t)\) and \(h(\alpha )=\min _{t\in \mathcal {T}}f(\alpha ,t)\) are continuous.

Proof

By the Heine–Cantor theorem, f is uniformly continuous. Hence, for every \(\varepsilon >0\), there exists a \(\delta >0\) such that \(\left| f(\alpha ,t)-f(\alpha ^{\prime },t^{\prime })\right| <\varepsilon \) whenever \(D_{\mathcal {A}}(\alpha ,\alpha ^{\prime })<\delta \) and \(D_{\mathcal {T} }(t,t^{\prime })<\delta \), where \(D_{\mathcal {A}}\) and \(D_{\mathcal {T}}\) are the distance functions on \(\mathcal {A}\) and \(\mathcal {T}\) respectively. Now, given \(\alpha \in \mathcal {A}\), let t be such that \(g(\alpha )=f(\alpha ,t)\). Then, for any \(\alpha ^{\prime }\in \mathcal {A}\) with \(D_{\mathcal {A}}(\alpha ,\alpha ^{\prime })<\delta \) we have that

$$\begin{aligned} g(\alpha )=f(\alpha ,t)<f(\alpha ^{\prime },t)+\varepsilon \leqslant \max _{t^{\prime }\in \mathcal {T}}f(\alpha ^{\prime },t^{\prime })+\varepsilon =g(\alpha ^{\prime })+\varepsilon . \end{aligned}$$

By symmetry, we then have that \(\left| g(\alpha )-g(\alpha ^{\prime })\right| <\varepsilon \), which proves the continuity of g. A similar argument establishes the continuity of h. \(\square \)

Proof of Theorem 4

Let \(\rho \), \(\sigma \), and \(\mathcal {N}\) be as given in Definition 4. Let

$$\begin{aligned} G\left( z\right) =\left( \mathcal {N}(\rho )^{-z/2}\mathcal {N}(\sigma )^{z/2}\otimes I_{E}\right) U\sigma ^{-z/2}\rho ^{\left( 1+z\right) /2}. \end{aligned}$$
(232)

In the equation

$$\begin{aligned} \frac{1}{p_{\theta }}=\frac{\theta }{p_{0}}+\frac{1-\theta }{p_{1}}, \end{aligned}$$
(233)

choose \(p_{0}=2\) and \(p_{1}=2\), so that \(p_{\theta }=2\). Recalling that

$$\begin{aligned} M_{k}=\sup _{t\in \mathbb {R}}\left\| G\left( k+it\right) \right\| _{p_{k}}, \end{aligned}$$
(234)

for \(k=0,1\), we find that

$$\begin{aligned} \left\| G\left( \theta \right) \right\| _{p_{\theta }}\le M_{0}^{1-\theta }M_{1}^{\theta }. \end{aligned}$$
(235)

For our choices, we find that

$$\begin{aligned} M_{0}&=\sup _{t\in \mathbb {R}}\left\| G\left( it\right) \right\| _{2} \end{aligned}$$
(236)
$$\begin{aligned}&=\sup _{t\in \mathbb {R}}\left\| \left( \mathcal {N}(\rho )^{-it/2} \mathcal {N}(\sigma )^{it/2}\otimes I_{E}\right) U\sigma ^{-it/2}\rho ^{\left( 1+it\right) /2}\right\| _{2}\end{aligned}$$
(237)
$$\begin{aligned}&=\left\| \rho ^{1/2}\right\| _{2}=1, \end{aligned}$$
(238)
$$\begin{aligned} M_{1}&=\sup _{t\in \mathbb {R}}\left\| G\left( 1+it\right) \right\| _{2}\end{aligned}$$
(239)
$$\begin{aligned}&=\sup _{t\in \mathbb {R}}\left\| \left( \mathcal {N}(\rho )^{-\left( 1+it\right) /2}\mathcal {N}(\sigma )^{\left( 1+it\right) /2}\otimes I_{E}\right) U\sigma ^{-\left( 1+it\right) /2}\rho ^{\left( 1+\left( 1+it\right) \right) /2}\right\| _{2}\end{aligned}$$
(240)
$$\begin{aligned}&=\sup _{t\in \mathbb {R}}\left\| \left( \mathcal {N}(\rho )^{-1/2} \mathcal {N}(\sigma )^{it/2}\mathcal {N}(\sigma )^{1/2}\otimes I_{E}\right) U\sigma ^{-1/2}\sigma ^{-it/2}\rho \right\| _{2}\end{aligned}$$
(241)
$$\begin{aligned}&=\left[ \exp \sup _{t\in \mathbb {R}}D_{2}\left( \rho \Vert \left( \mathcal {U}_{\sigma ,-t}\circ \mathcal {P}_{\sigma ,\mathcal {N}}\circ \mathcal {U}_{\mathcal {N}(\sigma ),t}\right) \left( \mathcal {N}(\rho )\right) \right) \right] ^{1/2}. \end{aligned}$$
(242)

Applying the three-line theorem gives

$$\begin{aligned}&\left\| \left( \mathcal {N}(\rho )^{-\theta /2}\mathcal {N}(\sigma )^{\theta /2}\otimes I_{E}\right) U\sigma ^{-\theta /2}\rho ^{\left( 1+\theta \right) /2}\right\| _{2}\nonumber \\&\quad \le \left[ \exp \sup _{t\in \mathbb {R}}D_{2}\left( \rho \Vert \left( \mathcal {U}_{\sigma ,-t}\circ \mathcal {P}_{\sigma ,\mathcal {N}}\circ \mathcal {U}_{\mathcal {N}(\sigma ),t}\right) \left( \mathcal {N}(\rho )\right) \right) \right] ^{\theta /2}, \end{aligned}$$
(243)

and after a logarithm gives

$$\begin{aligned}&\frac{2}{\theta }\log \left\| \left( \mathcal {N}(\rho )^{-\theta /2}\mathcal {N}(\sigma )^{\theta /2}\otimes I_{E}\right) U\sigma ^{-\theta /2} \rho ^{\left( 1+\theta \right) /2}\right\| _{2}\nonumber \\&\quad \le \sup _{t\in \mathbb {R} }D_{2}\left( \rho \Vert \left( \mathcal {U}_{\sigma ,-t}\circ \mathcal {P} _{\sigma ,\mathcal {N}}\circ \mathcal {U}_{\mathcal {N}(\sigma ),t}\right) \left( \mathcal {N}(\rho )\right) \right) . \end{aligned}$$
(244)

Take the limit as \(\theta \searrow 0\) to get

$$\begin{aligned} D(\rho \Vert \sigma )-D\left( \mathcal {N(}\rho )\Vert \mathcal {N(}\sigma )\right) \le \sup _{t\in \mathbb {R}}D_{2}\left( \rho \Vert \left( \mathcal {U}_{\sigma ,-t}\circ \mathcal {P}_{\sigma ,\mathcal {N}}\circ \mathcal {U}_{\mathcal {N} (\sigma ),t}\right) \left( \mathcal {N}(\rho )\right) \right) . \end{aligned}$$
(245)

Now we prove the other inequality. Let \(\rho \), \(\sigma \), and \(\mathcal {N}\) be as given in Definition 1 and such that \({\text {supp}} (\rho )\subseteq {\text {supp}}(\sigma )\). Take

$$\begin{aligned} G\left( z\right) =\left( \mathcal {N}(\rho )^{z/2}\mathcal {N}(\sigma )^{-z/2}\otimes I_{E}\right) U\sigma ^{z/2}\rho ^{\left( 1-z\right) /2}. \end{aligned}$$
(246)

Then \(M_{0}=1\) again and

$$\begin{aligned} M_{1}&=\sup _{t\in \mathbb {R}}\left\| G\left( 1+it\right) \right\| _{2} \end{aligned}$$
(247)
$$\begin{aligned}&=\sup _{t\in \mathbb {R}}\left\| \left( \mathcal {N}(\rho )^{\left( 1+it\right) /2}\mathcal {N}(\sigma )^{-\left( 1+it\right) /2}\otimes I_{E}\right) U\sigma ^{\left( 1+it\right) /2}\rho ^{\left( 1-\left( 1+it\right) \right) /2}\right\| _{2}\end{aligned}$$
(248)
$$\begin{aligned}&=\sup _{t\in \mathbb {R}}\left\| \left( \mathcal {N}(\rho )^{1/2} \mathcal {N}(\sigma )^{-it/2}\mathcal {N}(\sigma )^{-1/2}\otimes I_{E}\right) U\sigma ^{1/2}\sigma ^{it/2}\rho ^{0}\right\| _{2}\end{aligned}$$
(249)
$$\begin{aligned}&=\exp \left\{ -\inf _{t\in \mathbb {R}}D_{0}\left( \rho \Vert \left( \mathcal {U}_{\sigma ,-t}\circ \mathcal {P}_{\sigma ,\mathcal {N}}\circ \mathcal {U}_{\mathcal {N}(\sigma ),t}\right) \left( \mathcal {N}(\rho )\right) \right) \right\} ^{1/2}. \end{aligned}$$
(250)

Applying the three-line theorem gives

$$\begin{aligned}&\left\| \left( \mathcal {N}(\rho )^{\theta /2}\mathcal {N}(\sigma )^{-\theta /2}\otimes I_{E}\right) U\sigma ^{\theta /2}\rho ^{\left( 1-\theta \right) /2}\right\| _{2}\nonumber \\&\quad \le \left[ \exp \left\{ -\inf _{t\in \mathbb {R}}D_{0}\left( \rho \Vert \left( \mathcal {U}_{\sigma ,-t}\circ \mathcal {P}_{\sigma ,\mathcal {N}}\circ \mathcal {U}_{\mathcal {N}(\sigma ),t}\right) \left( \mathcal {N}(\rho )\right) \right) \right\} \right] ^{\theta /2}, \end{aligned}$$
(251)

which after taking a logarithm gives

$$\begin{aligned}&\frac{2}{-\theta }\log \left\| \left( \mathcal {N}(\rho )^{\theta /2}\mathcal {N}(\sigma )^{-\theta /2}\otimes I_{E}\right) U\sigma ^{\theta /2} \rho ^{\left( 1-\theta \right) /2}\right\| _{2}\nonumber \\&\quad \ge \inf _{t\in \mathbb {R} }D_{0}\left( \rho \Vert \left( \mathcal {U}_{\sigma ,-t}\circ \mathcal {P} _{\sigma ,\mathcal {N}}\circ \mathcal {U}_{\mathcal {N}(\sigma ),t}\right) \left( \mathcal {N}(\rho )\right) \right) . \end{aligned}$$
(252)

Take the limit as \(\theta \searrow 0\) to get

$$\begin{aligned} D(\rho \Vert \sigma )-D\left( \mathcal {N(}\rho )\Vert \mathcal {N(}\sigma )\right) \ge \inf _{t\in \mathbb {R}}D_{0}\left( \rho \Vert \left( \mathcal {U}_{\sigma ,-t}\circ \mathcal {P}_{\sigma ,\mathcal {N}}\circ \mathcal {U}_{\mathcal {N} (\sigma ),t}\right) \left( \mathcal {N}(\rho )\right) \right) . \end{aligned}$$
(253)

\(\square \)

Appendix 3: Taylor expansions

Here we show the following limit:

$$\begin{aligned} \lim _{\alpha \rightarrow 1}f\left( \alpha ,V_{\mathcal {N}(\sigma )},V_{\sigma }\right) =f\left( 1,V_{\mathcal {N}(\sigma )},V_{\sigma }\right) , \end{aligned}$$
(254)

where \(f\left( \alpha ,V_{\mathcal {N}(\sigma )},V_{\sigma }\right) \) is defined as

$$\begin{aligned}&f\left( \alpha ,V_{\mathcal {N}(\sigma )},V_{\sigma }\right) =\frac{1}{\alpha -1}\nonumber \\&\quad \log \left\| \left( \left[ \mathcal {N}\left( \rho \right) \right] ^{\left( 1-\alpha \right) /2}V_{\mathcal {N}(\sigma )}\left[ \mathcal {N} (\sigma )\right] ^{\left( \alpha -1\right) /2}\otimes I_{E}\right) U\sigma ^{\left( 1-\alpha \right) /2}V_{\sigma }\rho ^{\alpha /2}\right\| _{2}^{2}\qquad \end{aligned}$$
(255)

and \(f\left( 1,V_{\mathcal {N}(\sigma )},V_{\sigma }\right) \) in (53). From the fact that

$$\begin{aligned} \left. \log \left\| \left( \left[ \mathcal {N}(\rho )\right] ^{\left( 1-\alpha \right) /2}V_{\mathcal {N}(\sigma )}\left[ \mathcal {N}(\sigma )\right] ^{\left( \alpha -1\right) /2}\otimes I_{E}\right) U\sigma ^{\left( 1-\alpha \right) /2}V_{\sigma }\rho ^{\alpha /2}\right\| _{2}^{2}\right| _{\alpha =1}=0, \end{aligned}$$
(256)

we know (from the definition of derivative) that \(\lim _{\alpha \rightarrow 1}f\left( \alpha ,V_{\mathcal {N}(\sigma )},V_{\sigma }\right) \) is equal to

$$\begin{aligned}&\left. \frac{\hbox {d}}{\hbox {d}\alpha }\log \left\| \left( \left[ \mathcal {N}\left( \rho \right) \right] ^{\left( 1-\alpha \right) /2}V_{\mathcal {N}(\sigma )}\left[ \mathcal {N}(\sigma )\right] ^{\left( \alpha -1\right) /2}\otimes I_{E}\right) U\sigma ^{\left( 1-\alpha \right) /2}V_{\sigma }\rho ^{\alpha /2}\right\| _{2}^{2}\right| _{\alpha =1}\nonumber \\&\quad \quad =\left. \frac{\hbox {d}}{\hbox {d}\alpha }\left\| \left( \left[ \mathcal {N}\left( \rho \right) \right] ^{\left( 1-\alpha \right) /2}V_{\mathcal {N}(\sigma )}\left[ \mathcal {N}(\sigma )\right] ^{\left( \alpha -1\right) /2}\otimes I_{E}\right) U\sigma ^{\left( 1-\alpha \right) /2}V_{\sigma }\rho ^{\alpha /2}\right\| _{2}^{2}\right| _{\alpha =1}.\nonumber \\ \end{aligned}$$
(257)

We evaluate the latter derivative by employing Taylor expansions. Substitute \(\alpha =1+\gamma \), so that the quantity inside the derivative operation is equal to

$$\begin{aligned} \left\| \left( \left[ \mathcal {N}(\rho )\right] ^{-\gamma /2} V_{\mathcal {N}(\sigma )}\left[ \mathcal {N}(\sigma )\right] ^{\gamma /2}\otimes I_{E}\right) U\sigma ^{-\gamma /2}V_{\sigma }\rho ^{\left( 1+\gamma \right) /2}\right\| _{2}^{2}, \end{aligned}$$
(258)

which we can rewrite as

$$\begin{aligned} \left\| \left( \left[ V_{\mathcal {N}(\sigma )}^{\dag }\mathcal {N} (\rho )V_{\mathcal {N}(\sigma )}\right] ^{-\gamma /2}\left[ \mathcal {N} (\sigma )\right] ^{\gamma /2}\otimes I_{E}\right) U\sigma ^{-\gamma /2}\left[ V_{\sigma }\rho V_{\sigma }^{\dag }\right] ^{\left( 1+\gamma \right) /2}\right\| _{2}^{2}, \end{aligned}$$
(259)

due to the unitary invariance of the norm. Now we use that

$$\begin{aligned} \left[ V_{\sigma }\rho V_{\sigma }^{\dag }\right] ^{\left( 1+\gamma \right) /2}&=\left[ V_{\sigma }\rho V_{\sigma }^{\dag }\right] ^{1/2}+\frac{\gamma }{2}\left[ V_{\sigma }\rho V_{\sigma }^{\dag }\right] ^{1/2}\log \left[ V_{\sigma }\rho V_{\sigma }^{\dag }\right] +O\left( \gamma ^{2}\right) , \end{aligned}$$
(260)
$$\begin{aligned} \sigma ^{-\gamma /2}&=I-\frac{\gamma }{2}\log \sigma +O\left( \gamma ^{2}\right) ,\end{aligned}$$
(261)
$$\begin{aligned} \left[ \mathcal {N}(\sigma )\right] ^{\gamma /2}&=I+\frac{\gamma }{2} \log \left[ \mathcal {N}(\sigma )\right] +O\left( \gamma ^{2}\right) ,\end{aligned}$$
(262)
$$\begin{aligned} \left[ V_{\mathcal {N}(\sigma )}^{\dag }\mathcal {N}\left( \rho \right) V_{\mathcal {N}(\sigma )}\right] ^{-\gamma /2}&=I-\frac{\gamma }{2} \log \left[ V_{\mathcal {N}(\sigma )}^{\dag }\mathcal {N}(\rho )V_{\mathcal {N} (\sigma )}\right] +O\left( \gamma ^{2}\right) . \end{aligned}$$
(263)

The above implies that

$$\begin{aligned}&\left[ V_{\mathcal {N}(\sigma )}^{\dag }\mathcal {N}\left( \rho \right) V_{\mathcal {N}(\sigma )}\right] ^{-\gamma /2}\left[ \mathcal {N}(\sigma )\right] ^{\gamma /2}U\sigma ^{-\gamma /2}\left[ V_{\sigma }\rho V_{\sigma }^{\dag }\right] ^{\left( 1+\gamma \right) /2}\nonumber \\&\quad \quad =\left( I-\frac{\gamma }{2}\log \left[ V_{\mathcal {N}(\sigma )}^{\dag }\mathcal {N}(\rho )V_{\mathcal {N}(\sigma )}\right] \right) \left( I+\frac{\gamma }{2}\log \left[ \mathcal {N}(\sigma )\right] \right) \nonumber \\&\quad \quad \times U\left( I-\frac{\gamma }{2}\log \sigma \right) \left( \left[ V_{\sigma }\rho V_{\sigma }^{\dag }\right] ^{1/2}+\frac{\gamma }{2}\left[ V_{\sigma }\rho V_{\sigma }^{\dag }\right] ^{1/2}\log \left[ V_{\sigma }\rho V_{\sigma }^{\dag }\right] \right) +O\left( \gamma ^{2}\right) .\nonumber \\ \end{aligned}$$
(264)

By working out the right-hand side above and neglecting terms of second order in \(\gamma \) and higher, we find that

$$\begin{aligned}&\left[ V_{\mathcal {N}(\sigma )}^{\dag }\mathcal {N}\left( \rho \right) V_{\mathcal {N}(\sigma )}\right] ^{-\gamma /2}\left[ \mathcal {N}(\sigma )\right] ^{\gamma /2}U\sigma ^{-\gamma /2}\left[ V_{\sigma }\rho V_{\sigma }^{\dag }\right] ^{\left( 1+\gamma \right) /2} \nonumber \\&\quad =U\left[ V_{\sigma }\rho V_{\sigma }^{\dag }\right] ^{1/2}-\frac{\gamma }{2} \log \left[ V_{\mathcal {N}(\sigma )}^{\dag }\mathcal {N}\left( \rho \right) V_{\mathcal {N}(\sigma )}\right] U\left[ V_{\sigma }\rho V_{\sigma }^{\dag }\right] ^{1/2}\nonumber \\&\quad \quad +\frac{\gamma }{2}\log \left[ \mathcal {N}(\sigma )\right] U\left[ V_{\sigma }\rho V_{\sigma }^{\dag }\right] ^{1/2}\nonumber \\&\quad \quad -\frac{\gamma }{2}U\left[ \log \sigma \right] \left[ V_{\sigma }\rho V_{\sigma }^{\dag }\right] ^{1/2}+\frac{\gamma }{2}U\left[ V_{\sigma }\rho V_{\sigma }^{\dag }\right] ^{1/2}\log \left[ V_{\sigma }\rho V_{\sigma }^{\dag }\right] +O\left( \gamma ^{2}\right) .\nonumber \\ \end{aligned}$$
(265)

The Hermitian conjugate is

$$\begin{aligned}&\left[ V_{\sigma }\rho V_{\sigma }^{\dag }\right] ^{1/2}U^{\dag }-\frac{\gamma }{2}\left[ V_{\sigma }\rho V_{\sigma }^{\dag }\right] ^{1/2}U^{\dag }\log \left[ V_{\mathcal {N}(\sigma )}^{\dag }\mathcal {N}(\rho )V_{\mathcal {N}(\sigma )}\right] \nonumber \\&\quad +\frac{\gamma }{2}\left[ V_{\sigma }\rho V_{\sigma }^{\dag }\right] ^{1/2}U^{\dag }\log \left[ \mathcal {N}(\sigma )\right] \nonumber \\&\quad -\frac{\gamma }{2}\left[ V_{\sigma }\rho V_{\sigma }^{\dag }\right] ^{1/2}\left[ \log \sigma \right] U^{\dag }+\frac{\gamma }{2}\left[ \log \left[ V_{\sigma }\rho V_{\sigma }^{\dag }\right] \right] \left[ V_{\sigma }\rho V_{\sigma }^{\dag }\right] ^{1/2}U^{\dag }+O\left( \gamma ^{2}\right) .\nonumber \\ \end{aligned}$$
(266)

Combining (265) with its Hermitian conjugate and neglecting higher order terms gives

$$\begin{aligned}&\left[ V_{\sigma }\rho V_{\sigma }^{\dag }\right] -\gamma \left[ V_{\sigma }\rho V_{\sigma }^{\dag }\right] ^{1/2}\mathcal {N}^{\dag }\left( \log \left[ V_{\mathcal {N}(\sigma )}^{\dag }\mathcal {N}(\rho )V_{\mathcal {N}(\sigma )}\right] \right) \left[ V_{\sigma }\rho V_{\sigma }^{\dag }\right] ^{1/2}\nonumber \\&\quad +\gamma \left[ V_{\sigma }\rho V_{\sigma }^{\dag }\right] ^{1/2}\mathcal {N} ^{\dag }\left( \log \left[ \mathcal {N}(\sigma )\right] \right) \left[ V_{\sigma }\rho V_{\sigma }^{\dag }\right] ^{1/2}-\gamma \left[ V_{\sigma }\rho V_{\sigma }^{\dag }\right] ^{1/2}\left[ \log \sigma \right] \left[ V_{\sigma }\rho V_{\sigma }^{\dag }\right] ^{1/2}\nonumber \\&\quad +\frac{\gamma }{2}\left[ V_{\sigma }\rho V_{\sigma }^{\dag }\right] \log \left[ V_{\sigma }\rho V_{\sigma }^{\dag }\right] +\frac{\gamma }{2}\left( \log \left[ V_{\sigma }\rho V_{\sigma }^{\dag }\right] \right) \left[ V_{\sigma }\rho V_{\sigma }^{\dag }\right] +O\left( \gamma ^{2}\right) . \end{aligned}$$
(267)

Taking a trace gives

$$\begin{aligned}&\text {Tr}\left\{ \rho \right\} -\gamma \text {Tr}\left\{ \left[ V_{\sigma }\rho V_{\sigma }^{\dag }\right] \mathcal {N}^{\dag }\left( \log \left[ V_{\mathcal {N}(\sigma )}^{\dag }\mathcal {N}(\rho )V_{\mathcal {N}(\sigma )}\right] \right) \right\} \nonumber \\&\quad +\gamma \text {Tr}\left\{ \left[ V_{\sigma }\rho V_{\sigma }^{\dag }\right] \mathcal {N}^{\dag }\left( \log \left[ \mathcal {N}(\sigma )\right] \right) \right\} -\gamma \text {Tr}\left\{ \rho \left[ \log \sigma \right] \right\} \nonumber \\&\quad +\gamma \text {Tr}\left\{ \rho \log \rho \right\} +O\left( \gamma ^{2}\right) . \end{aligned}$$
(268)

We can now finally use the above development to conclude that

$$\begin{aligned}&\left. \frac{\hbox {d}}{\hbox {d}\alpha }\left\| \left( \left[ \mathcal {N}\left( \rho \right) \right] ^{\left( 1-\alpha \right) /2}V_{\mathcal {N}(\sigma )}\left[ \mathcal {N}(\sigma )\right] ^{\left( \alpha -1\right) /2}\otimes I_{E}\right) U\sigma ^{\left( 1-\alpha \right) /2}V_{\sigma }\rho ^{\alpha /2}\right\| _{2}^{2}\right| _{\alpha =1}\nonumber \\&\quad =\left. \frac{\hbox {d}}{\hbox {d}\gamma }\left\| \left( \left[ V_{\mathcal {N} (\sigma )}^{\dag }\mathcal {N}(\rho )V_{\mathcal {N}(\sigma )}\right] ^{-\gamma /2}\left[ \mathcal {N}(\sigma )\right] ^{\gamma /2}\otimes I_{E}\right) U\sigma ^{-\gamma /2}\left[ V_{\sigma }\rho V_{\sigma }^{\dag }\right] ^{\left( 1+\gamma \right) /2}\right\| _{2}^{2}\right| _{\gamma =0} \end{aligned}$$
(269)
$$\begin{aligned}&\quad ={\text {Tr}}\left\{ \rho \left[ \log \rho -\log \sigma \right] \right\} \nonumber \\&\quad -{\text {Tr}}\left\{ \mathcal {N}\left( \left[ V_{\sigma }\rho V_{\sigma }^{\dag }\right] \right) \left[ \log \left[ V_{\mathcal {N}(\sigma )}^{\dag }\mathcal {N}(\rho )V_{\mathcal {N}(\sigma )}\right] -\log \left[ \mathcal {N}(\sigma )\right] \right] \right\} \end{aligned}$$
(270)
$$\begin{aligned}&\quad =f(1,V_{\mathcal {N}(\sigma )},V_{\sigma }). \end{aligned}$$
(271)

A similar development with Taylor expansions leads to the conclusion that (63) holds. However, here one should employ the method outlined in the proof of [46, Proposition11].

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dupuis, F., Wilde, M.M. Swiveled Rényi entropies. Quantum Inf Process 15, 1309–1345 (2016). https://doi.org/10.1007/s11128-015-1211-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-015-1211-x

Keywords

Navigation