Journal of Productivity Analysis

, Volume 47, Issue 1, pp 1–16 | Cite as

Technical efficiency for Colombian small crop and livestock farmers: A stochastic metafrontier approach for different production systems

  • Ligia Alba Melo-Becerra
  • Antonio José Orozco-Gallo
Article

Abstract

This paper assesses the efficiency of crop and livestock production in Colombia by using a sample of 1565 households. The study considers households located in different production systems which differ in geography, climate and soil types. These conditions affect technical efficiency and thus render analysis under the same production frontier as inadequate. For this reason, stochastic metafrontier techniques are preferred, allowing the estimation of technical efficiency within each production system and between production systems in relation to the sector as a whole. Results suggest that households in some production systems could be benefiting from better production conditions due to advantages in the availability of natural resources and climate as well as to more favorable socio-economic conditions. Additionally, we found that, in all systems, households with higher production have higher measures of technical efficiency. Thus, significant gains could be achieved in the sector through measures that contribute to improve the efficiency of households within their production systems and by policies that help reduce the technology gap in relation to the meta-frontier. These policies would bring positive impacts on the quality of life of small farmers and on the productivity of the sector.

Keywords

Stochastic frontier analysis Technical efficiency Metafrontier production function Colombia 

JEL Classification

C14 Q12 D24 

Notes

Acknowledgments

The authors acknowledge Boris E. Bravo-Ureta, Professor of Agricultural and Resource Economics at the University of Connecticut, for his suggestions and guidance to undertake this document; Carlos Gustavo Cano, member of the Board of the Colombian Central Bank, for his recommendations and guidance to find the necessary information for the research; José Gabriel Tafur, from the National Administrative Department of Statistics, for the provision of information and support in processing the database. We also wish to thank Jesus Barrios, Luis Armando Galvis, Jhorland Ayala García and Héctor Zárate for their comments and suggestions, and Helena González and Esteban Larrota for their research assistance. The opinions expressed herein belong to the authors and do not necessarily reflect the views of Banco de la República or its Board of Directors.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Adhikari CB, Bjorndal T (2012) Analyses of technical efficiency using SFA and DEA models: evidence from Nepalese agriculture. Appl Econ 44(1):3297–3308CrossRefGoogle Scholar
  2. Ahmed N, Zander KK, Garnett ST (2011) Socioeconomics aspects of rice-fish farming in Bangladesh: opportunities, challenges and production efficiency. Aust J Agric Resour Econ 55:199–219CrossRefGoogle Scholar
  3. Amores AF, Contreras I (2009) New approach for the assignment of new European agricultural subsidies using scores from DEA: application to olive-growing farms in Andalusia (Spain). Eur J Oper Res 193(1):718–729CrossRefGoogle Scholar
  4. Atici KB, Podinovski VV (2015) Using data envelopment analysis for the assessment of technical efficiency of units with different specialisations: an application to agriculture. Int J Manage Sci, Omega 54(1):72–83CrossRefGoogle Scholar
  5. Battese GE, Rao DSP, O’Donnell CJ (2004) A metafrontier production function for estimation of technical efficiencies and technology gaps for firms operating under different technologies. J Prod Anal 21(1):91–103CrossRefGoogle Scholar
  6. Battese GE, Rao DS (2002) Technology gap, efficiency, and a stochastic metafrontier function. Int J Bus Econ 1(2):87–93Google Scholar
  7. Battese GE, Coelli TJ (1995) A model for technical inefficiency effects in a stochastic frontier production function for panel data. Empir Econ 20(1):325–332CrossRefGoogle Scholar
  8. Bravo-Ureta BE, Pinheiro AE (1997) Technical, economic, and allocative efficiency in peasant farming: evidence from the Dominican Republic. Dev Econ 35(1):48–67CrossRefGoogle Scholar
  9. Brümmer B (2001) Estimating confidence intervals for technical efficiency: the case of private farms in Slovenia. Eur Rev Agric Econ 28(3):285–306CrossRefGoogle Scholar
  10. Bustillo AE (2006) Una revisión sobre la broca del café, Hypothenemus hampei (Coleoptera: Curculionidae: Scolytinae), en Colombia. Rev Colombiana de Entomología 32(2):101–116Google Scholar
  11. Cano CG (2013) La agricultura colombiana de cara a los pactos bilaterales de comercio. Borradores de Economía, 778. Bogotá: Banco de la RepúblicaGoogle Scholar
  12. Cano CG, Vallejo C, Caicedo E, Amador JS, Tique EY (2012) El mercado mundial del café y su impacto en Colombia. Borradores de Economía, 710. Bogotá: Banco de la RepúblicaGoogle Scholar
  13. Chavas JP, Petrie R, Roth M (2005) Farm household production efficiency: evidence from The Gambia. Am J Agric Econ 87(1):160–179CrossRefGoogle Scholar
  14. Chiona S, Kalinda T, Tembo G (2014) Stochastic frontier analysis of the technical efficiency of smallholder maize farmers in Central Province, Zambia. J Agr Sci 6(10):108–118Google Scholar
  15. Coelli T, Prasada Rao DS, O’Donnell C, Battese G (2005) An introduction to efficiency and productivity analysis, 2nd edn. Springer Science Business Media, New York, USAGoogle Scholar
  16. Coelli T, Estache A, Perelman S, Trujillo L (2003) A primer on efficiency measurement for utilities and transport regulators. The World Bank, Washington, DCCrossRefGoogle Scholar
  17. Coelli TJ, Perelman S, Romano E (1999) Accounting for environmental influences in stochastic frontier models: with application to international airlines. J Prod Anal 11(1):251–273CrossRefGoogle Scholar
  18. Fletschner D, Guirkinger C, Boucher S (2010) Risk, credit constraints and financial efficiency in Peruvian agriculture. J Develompent Stud 46(6):981–1002CrossRefGoogle Scholar
  19. Galvis LA (2001) ¿Qué determina la productividad agrícola departamental en Colombia? Documentos de Trabajo Sobre Economía Regional, 19. Cartagena de Indias: Banco de la RepúblicaGoogle Scholar
  20. Gamarra JR (2004) Eficiencia técnica relativa de la ganadería doble propósito en la Costa Caribe. Documentos de Trabajo Sobre Economía Regional, 53. Cartagena de Indias: Banco de la RepúblicaGoogle Scholar
  21. Gómez HJ, Restrepo JC, Nash J, Valdés A, Reina M, Zuluaga S, Perfetti JJ (2011) La política comercial del sector agrícola en Colombia. Cuadernos de Fedesarrollo, 48. FedesarrolloGoogle Scholar
  22. Hayami Y, Ruttan VW (1971) Agricultural development: An international perspective. Johns Hopkins University Press, Baltimore, MDGoogle Scholar
  23. Huang CJ, Huang TH, Liu NH (2014) A new approach to estimating the metafrontier production function based on a stochastic frontier framework. J Prod Anal 42(1):241–254CrossRefGoogle Scholar
  24. IGAC (2012) Conflictos de uso del territorio colombiano escala 1:1000.000. Convenio marco de cooperación, Bogotá D CGoogle Scholar
  25. Jiang N, Sharp B (2015) Technical efficiency and technological gap of New Zealand dairy farms: a stochastic metafrontier model. J Prod Anal 44(1):39–49CrossRefGoogle Scholar
  26. Junguito R, Perfetti JJ, Becerra A (2014) Desarrollo de la agricultura colombiana. Cuadernos de Fedesarrollo, 48. FedesarrolloGoogle Scholar
  27. Kim HY (1992) The translog production function and variable returns to scale. Rev Econ Stat 70(3):546–552CrossRefGoogle Scholar
  28. Kompas T, Nhu CT (2006) Technology choice and efficiency on Australian dairy farms. Aust J Agric Resour Econ 50:65–83CrossRefGoogle Scholar
  29. Kumbhakar SC, Knox Lovell CA (2000) Stochastic frontier analysis. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  30. Kumbhakar SC, Biswas B, Bailey D (1989) A study of economic efficiency of Utah dairy farmers: a system approach. Rev Econ Stat 71(4):595–604CrossRefGoogle Scholar
  31. Kuo HF, Chen HL, Tsou KW (2014) Analysis of farming environmental efficiency using a DEA model with undesirable outputs. Procedia APCBEE 10(1):154–158CrossRefGoogle Scholar
  32. Latruffe L, Balcombe K, Davidova S, Zawalinska K (2004) Determinants of technical efficiency of crop and livestock farms in Poland. Appl Econ 36(1):1255–1263CrossRefGoogle Scholar
  33. Ludena CE (2010) Agricultural productivity growth, efficiency change and technical progress in Latin America and the Caribbean. Inter-American Development Bank, Working Paper, 186Google Scholar
  34. Melo L, Espinosa N (2005) Ineficiencia en la distribución de energía eléctrica: una aplicación de las funciones de distancia estocástica. Revista Ensayos sobre Política Económica 49(1):88–132Google Scholar
  35. Michler JD, Shively GE (2015) Land tenure, tenure security and farm efficiency: panel evidence from the Philippines. J Agric Econ 66(1):155–169CrossRefGoogle Scholar
  36. Miljkovic D, Miranda SH, Shaik S (2013) Trade openness and technical efficiency in Brazilian agriculture. Appl Econ Lett 20(1):103–106CrossRefGoogle Scholar
  37. Moreno A (2007) Fundamentos sobre sistemas de producción. En Arcila, J, Farfán, F, Moreno, A, Salazar y LF, Hincapie E (eds) Sistemas de producción de café en Colombia, Chap. 1. Federación Nacional de Cafeteros de Colombia y Cenicafé, Chinchiná, Colombia, pp 15–21Google Scholar
  38. O’Donnell CJ, Rao DS, Battese GE (2008) Metafrontier frameworks for the study of firm-level efficiencies and technology ratios. Empir Econ 34(1):231–255CrossRefGoogle Scholar
  39. Parra-Peña RI, Ordóñez LA, Acosta CA (2013) Pobreza, brechas y ruralidad en Colombia. Coyuntura Económica: Investigación Económica y Social 43(1):15–36Google Scholar
  40. Paul MC, Nehring R, Banker D, Somwaru A (2004) Scale economies and efficiency in U.S. agriculture: are traditional farms history? J Prod Anal 22(1):185–205CrossRefGoogle Scholar
  41. Perdomo JA, Hueth D (2010) Funciones de producción y eficiencia técnica en el eje cafetero colombiano: una aproximación con frontera estocástica. Documentos CEDE, 21. Universidad de los AndesGoogle Scholar
  42. Perdomo JA, Mendieta JC (2007) Factores que afectan la eficiencia técnica y asignativa en el sector cafetero colombiano: Una aplicación con análisis envolvente de datos. Desarro Soc 60:1–45Google Scholar
  43. Pérez-Vélez JP (2014) Uso de fertilizantes y su impacto en la producción agrícola. Tesis Maestría en Ciencias—Geomorfología y Suelos, Universidad Nacional de Colombia Facultad de Ciencias, Departamento de BiocienciasGoogle Scholar
  44. Perfetti JJ, Balcázar A, Hernández A, Leibovich J (2013) Políticas para el desarrollo de la agricultura en Colombia. Fedesarrollo, Sociedad de Agricultores de Colombia (SAC), Incoder, Finagro, Banco AgrarioGoogle Scholar
  45. Rao DS, O’Donnell CJ, Battese GE (2003) Metafrontier functions for the study of inter-regional productivity differences. Centre for efficiency and productivity analysis, Working paper series No. 1. University of QueenslandGoogle Scholar
  46. Rezitis AN, Tsiboukas K, Tsoukalas S (2002) Measuring technical efficiency in the Greek agricultural sector. Appl Econ 34(1):1345–1357CrossRefGoogle Scholar
  47. Ruiz De, Londoño N, Pinstrup-Andersen P (1975) Descripción de factores asociados con bajos rendimientos de maíz en fincas pequeñas de tres departamentos de Colombia. Centro Internacional de. Agricultura Tropical (CIAT), CaliGoogle Scholar
  48. Skevas T, Lansink AO, Stefanou SE (2012) Measuring technical efficiency in the presence of pesticide spillovers and production uncertainty—the case of Dutch arable farms. Eur J Oper Res 223(1):550–559CrossRefGoogle Scholar
  49. Trujillo JC, Iglesias WJ (2013) Measurement of the Technical Efficiency of Small Pineapple Farmers in Santander, Colombia: a stochastic frontier approach. Revista de Economia e Sociologia Rural 51(S1):5049–5062Google Scholar
  50. Vergara W (2010) La ganadería extensiva y el problema agrario. El reto de un modelo de desarrollo rural sustentable para Colombia. Rev Cien Anim 3:45–53Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Ligia Alba Melo-Becerra
    • 1
  • Antonio José Orozco-Gallo
    • 1
  1. 1.Banco de la RepúblicaBogotáColombia

Personalised recommendations