Skip to main content

Advertisement

Log in

Modeling of the redox state dynamics in photosystem II of Chlorella pyrenoidosa Chick cells and leaves of spinach and Arabidopsis thaliana from single flash-induced fluorescence quantum yield changes on the 100 ns–10 s time scale

  • Regular Paper
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

The time courses of the photosystem II (PSII) redox states were analyzed with a model scheme supposing a fraction of 11–25 % semiquinone (with reduced \({\text{Q}}_{\text{B}}^{ - }\)) RCs in the dark. Patterns of single flash-induced transient fluorescence yield (SFITFY) measured for leaves (spinach and Arabidopsis (A.) thaliana) and the thermophilic alga Chlorella (C.) pyrenoidosa Chick (Steffen et al. Biochemistry 44:3123−3132, 2005; Belyaeva et al. Photosynth Res 98:105–119, 2008, Plant Physiol Biochem 77:49–59, 2014) were fitted with the PSII model. The simulations show that at high-light conditions the flash generated triplet carotenoid 3Car(t) population is the main NPQ regulator decaying in the time interval of 6–8 μs. So the SFITFY increase up to the maximum level \(F_{\text{m}}^{\text{STF}}\)/F 0 (at ~50 μs) depends mainly on the flash energy. Transient electron redistributions on the RC redox cofactors were displayed to explain the SFITFY measured by weak light pulses during the PSII relaxation by electron transfer (ET) steps and coupled proton transfer on both the donor and the acceptor side of the PSII. The contribution of non-radiative charge recombination was taken into account. Analytical expressions for the laser flash, the 3Car(t) decay and the work of the water-oxidizing complex (WOC) were used to improve the modeled P680+ reduction by YZ in the state S 1 of the WOC. All parameter values were compared between spinach, A. thaliana leaves and C. pyrenoidosa alga cells and at different laser flash energies. ET from \({\text{Q}}_{\text{A}}^{ - } \;{\text{to}}\;{\text{Q}}_{\text{B}}^{( - )}\) slower in alga as compared to leaf samples was elucidated by the dynamics of \({\text{Q}}_{\text{A}}^{ - } ,{\text{ Q}}_{\text{B}}^{ - }\) fractions to fit SFITFY data. Low membrane energization after the 10 ns single turnover flash was modeled: the ∆Ψ(t) amplitude (20 mV) is found to be about 5-fold smaller than under the continuous light induction; the time-independent lumen pHL, stroma pHS are fitted close to dark estimates. Depending on the flash energy used at 1.4, 4, 100 % the pHS in stroma is fitted to 7.3, 7.4, and 7.7, respectively. The biggest ∆pH difference between stroma and lumen was found to be 1.2, thus pH- dependent NPQ was not considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

Chl:

Chlorophyll

PSII:

Photosystem II

RC:

Reaction center (PSII)

P680, P680 :

Chlorophyll a acting as the electron donor in PSII

Phe, Ph:

Primary electron acceptor, pheophytin

QA and QB :

Primary and secondary plastoquinone electron acceptors of PSII

3Car:

Triplet carotenoid state

YZ :

Tyrosine 161 of the PSII D1 polypeptide

WOC:

Water oxidizing complex

PQ:

Plastoquinone

PQH2 :

Plastoquinol

\({\text{H}} _{\text{L}}^{ + } ,{\text{ H}}_{\text{S}}^{ + }\) :

Protons in lumen, in stroma

pHL, pHS :

pH in lumen, in stroma

Ψ :

Electrical potential across the thylakoid membrane

EET:

Excitation energy transfer

ET:

Electron transfer

PT:

Proton transfer

FL:

Fluorescence

ETC:

Electron transport chain

Cyt b 6 f :

Cytochrome b 6 f complex

k L :

Light excitation rate (time dependent)

k 3Car :

Rate constant of quenching by triplet carotenoids

k F :

Rate constant of fluorescence emission

k WOC :

Rate constant of the electron donation to the oxidized P680+•

LED:

Light emitting diode

PFD:

Photon flux density

F 0 :

Minimal FL yield

F m :

Maximal FL yield induced by multiturnover light

\(F_{\text{m}}^{\text{STF}}\) :

Maximal FL yield excited by single turnover flash

SFITFY:

Single flash-induced transient fluorescence yield

STF:

Single turnover flash

FWHM, fwhm:

Full width at half-maximum

References

  • Baake E, Schlöder JP (1992) Modelling the fast fluorescence rise of photosynthesis. Bull Math Biol 54:999–1021

    Article  CAS  Google Scholar 

  • Baker NR, Harbinson J, Kramer DM (2007) Determining the limitations and regulation of photosynthetic energy transduction in leaves. Plant Cell Environ 30:1107–1125

    Article  CAS  PubMed  Google Scholar 

  • Bao H, Dilbeck PL, Burnap RL (2013) Proton transport facilitating water-oxidation: the role of second sphere ligands surrounding the catalytic metal cluster. Photosynth Res 116:215–229

    Article  CAS  PubMed  Google Scholar 

  • Belyaeva NE (2004) Generalized model of primary photosynthetic processes in chloroplasts. Ph D thesis, Moscow

  • Belyaeva NE, Paschenko VZ, Renger G, Riznichenko GYu, Rubin AB (2006) Application of photosystem II model for analysis of fluorescence induction curves in the 100 ns–10 s time domain after excitation with a saturating light pulse. Biophysics 51(6):860–872

    Article  Google Scholar 

  • Belyaeva NE, Schmitt F-J, Steffen R, Paschenko VZ, Riznichenko GYu, Chemeris YuK, Renger G, Rubin AB (2008) PS II model-based simulations of single turnover flash-induced transients of fluorescence yield monitored within the time domain of 100 ns–10 s on dark-adapted Chlorella pyrenoidosa cells. Photosynth Res 98:105–119

    Article  CAS  PubMed  Google Scholar 

  • Belyaeva NE, Schmitt F-J, Paschenko VZ, Riznichenko GYu, Rubin AB, Renger G (2011a) PS II model based analysis of transient fluorescence yield measured on whole leaves of Arabidopsis thaliana after excitation with light flashes of different energies. BioSystems 103(2):188–195

    Article  CAS  PubMed  Google Scholar 

  • Belyaeva NE, Bulychev AA, Riznichenko GYu, Rubin AB (2011b) A model of photosystem II for the analysis of fast fluorescence rise in plant leaves. Biophysics 56(3):464–477

    Article  Google Scholar 

  • Belyaeva NE, Schmitt F-J, Paschenko VZ, Riznichenko GYu, Rubin AB, Renger G (2014) Model based analysis of transient fluorescence yield induced by actinic laser flashes in spinach leaves and cells of green alga Chlorella pyrenoidosa Chick. Plant Physiol Biochem 77:49–59

    Article  CAS  PubMed  Google Scholar 

  • Björn LO, Papageorgiou GC, Blankenship RE, Govindjee (2009) A viewpoint: why chlorophyll a? Photosynth Res 99:85–98

    Article  PubMed  Google Scholar 

  • Blankenship RE (2002) Molecular mechanisms of photosynthesis. Blackwell, Oxford

    Book  Google Scholar 

  • Bowes JM, Crofts AR (1980) Binary oscillations in the rate of reoxidation of the primary acceptor of photosystem II. Biochim Biophys Acta 590:373–384

    Article  CAS  PubMed  Google Scholar 

  • Bulychev AA (1984) Different kinetics of membrane potential formation in dark-adapted and preilluminated chloroplasts. Biochim Biophys Acta 766(3):647–652

    Article  CAS  Google Scholar 

  • Bulychev AA, Vredenberg WJ (1999) Light-triggered electrical events in the thylakoid membrane of plant chloroplast. Physiol Plant 105:577–584

    Article  CAS  Google Scholar 

  • Bulychev AA, Vredenberg WJ (2001) Modulation of photosystem II chlorophyll fluorescence by electrogenic events generated by photosystem I. Bioelectrochemistry 54:157–168

    Article  CAS  PubMed  Google Scholar 

  • Bulychev AA, Niyazova MM, Turovetsky VB (1986) Electro-induced changes of chlorophyll fluorescence in individual intact chloroplasts. Biochim Biophys Acta 850:218–225

    Article  CAS  Google Scholar 

  • Bulychev AA, Niyazova MM, Rubin AB (1987) Fluorescence changes of chloroplasts caused by the shifts of membrane-potential and their dependence on the redox state of the acceptor of photosystem II. Biol Membr 4:262–269

    CAS  Google Scholar 

  • Cardona T, Sedoud A, Cox N, Rutherford AW (2012) Charge separation in photosystem II: a comparative and evolutionary overview. Biochim Biophys Acta 1817:26–43

    Article  CAS  PubMed  Google Scholar 

  • Christen G, Seeliger A, Renger G (1999) P680+ reduction kinetics and redox transition probability of the water oxidising complex as a function of pH and H/D isotope exchange in spinach thylakoids. Biochemistry 38:6082–6092

    Article  CAS  PubMed  Google Scholar 

  • Crofts AR, Wraight CA (1983) The electrochemical domain of photosynthesis. Biochim Biophys Acta 726:149–185

    Article  CAS  Google Scholar 

  • Cruz JA, Sacksteder CA, Kanazawa A, Kramer DM (2001) Contribution of electric field (Δψ) to steady-state transthylakoid proton motive force (pmf) in vivo and in vitro. Control of pmf parsing into Δψ and ΔpH by ionic strength. Biochemistry 40:1226–1237

    Article  CAS  PubMed  Google Scholar 

  • Cruz JA, Kanazawa A, Treff N, Kramer DM (2005) Storage of light-driven transthylakoid proton motive force as an electric field (Δψ) under steady-state conditions in intact cells of Chlamydomonas reinhardtii. Photosynth Res 85:221–233

    Article  CAS  PubMed  Google Scholar 

  • Dau H (1994) Molecular mechanism and quantitative models of variable photosystem II fluorescence. Photochem Photobiol 60:1–23

    Article  CAS  Google Scholar 

  • Dau H, Sauer K (1991) Electric field effect on chlorophyll fluorescence and its relation to photosystem II charge separation reactions studied by a salt jump technique. Biochim Biophys Acta 1089:49–60

    Article  Google Scholar 

  • Dau H, Sauer K (1992) Electric field effect on the picosecond fluorescence of photosystem II and its relation to the energetics and kinetics of primary charge separation. Biochim Biophys Acta 1102:91–106

    Article  CAS  Google Scholar 

  • de Wijn R, van Gorkom HJ (2001) Kinetics of electron transfer from Q(a) to Q(b) in photosystem II. Biochemistry 40:11912–11922

    Article  PubMed  Google Scholar 

  • Ebenhöh O, Houwaart T, Lokstein H, Schlede S, Tirok K (2011) A minimal mathematical model of nonphotochemical quenching of chlorophyll fluorescence. Biosystems 103(2):196–204. http://www.sciencedirect.com/science/article/pii/S0303264710001851.cor0005mailto:ebenhoeh@abdn.ac.uk

  • Eckert H-J, Renger G (1988) Temperature dependence of P680+ reduction in O2-evolving PS II membrane fragments at different redox states S i of the water oxidizing system. FEBS Lett 236:425–431

    Article  CAS  Google Scholar 

  • Gibasiewicz K, Dobek A, Breton J, Leibl W (2001) Modulation of primary radical pair kinetics and energetics in photosystem II by the redox state of the quinone electron acceptor QA. Biophys J 80:1617–1630

  • Govindjee (1982) Photosynthesis, vol 2. Academic Press, New York

    Google Scholar 

  • Govindjee N (1995) Sixty-three years since Kautsky: chlorophyll a fluorescence. Aust J Plant Physiol 22:131–160

    Article  CAS  Google Scholar 

  • Hope AB (1993) The chloroplast cytochrome bf complex: a critical focus on function. Biochim Biophys Acta 1143:1–22

    Article  CAS  PubMed  Google Scholar 

  • Kern J, Renger G (2007) Photosystem II: structure and mechanism of the water:plastoquinone-oxido:reductase. Photosynth Res 94:183–202

    Article  CAS  PubMed  Google Scholar 

  • Kramer DM, Sacksteder CA, Cruz JA (1999) How acidic is the lumen? Photosynth Res 60:151–163

    Article  CAS  Google Scholar 

  • Kramer DM, Cruz JA, Kanazawa A (2003) Balancing the central roles of the thylakoid proton gradient. Trends Plant Sci 8:27–32

    Article  CAS  PubMed  Google Scholar 

  • Kroon BMA, Thoms S (2006) From electron to biomass: a mechanistic model to describe phytoplankton photosynthesis and steady-state growth rates. J Phycol 42:593–609

  • Kühn P, Eckert H-J, Eichler H-J, Renger G (2004) Analysis of the P680+• reduction pattern and its temperature dependence in oxygen evolving PS II core complexes from thermophilic cyanobacteria and higher plants. Phys Chem Chem Phys 6:4838–4843

    Article  Google Scholar 

  • Kuvykin IV, Ptushenko VV, Vershubskii AV, Tikhonov AN (1807) Regulation of electron transport in C(3) plant chloroplasts in situ and in silico: short-term effects of atmospheric CO(2) and O(2). Biochim Biophys Acta 1807(3):336–347

    Article  Google Scholar 

  • Laible PD, Zipfel W, Owens TG (1994) Excited state dynamics in chlorophyll-based antennae: the role of transfer equilibrium. Biophys J 66:844–860

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Laisk A, Walker DA (1989) A mathematical model of electrone transport. Thermodynamic necessity for photosystem II regulation. Proc R Soc Lond B237:417–444

    Article  Google Scholar 

  • Laisk A, Eichelmann H, Oja V (2006) C3 photosynthesis in silico. Photosynth Res 90:45–66

    Article  CAS  PubMed  Google Scholar 

  • Lazár D (2003) Chlorophyll a fluorescence rise induced by high light illumination of dark-adapted plant tissue studied by means of a model of photosystem II and considering photosystem II heterogeneity. J Theor Biol 220:469–503

    Article  PubMed  Google Scholar 

  • Lazár D (2013) Simulations show that a small part of variable chlorophyll a fluorescence originates in photosystem I and contributes to overall fluorescence rise. J Theor Biol 335:249–264

    Article  PubMed  Google Scholar 

  • Lebedeva GV, Belyaeva NE, Riznichenko GYu, Rubin AB, Demin OV (2000) Kinetic model of photosystem II of higher green plants. Russ J Phys Chem 74:1702–1710

  • Lebedeva GV, Belyaeva NE, Demin OV, Riznichenko GYu, Rubin AB (2002) Kinetic model of primary photosynthetic processes in chloroplasts. Description of the fast phase of chlorophyll fluorescence induction under different light intensities. Biophysics 47:968–980

    Google Scholar 

  • Leibl W, Breton J, Deprez J, Trissl HW (1989) Photoelectric study on the kinetics of trapping and charge stabilization in oriented PS II membranes. Photosynth Res 22:257–275

    Article  CAS  PubMed  Google Scholar 

  • Meyer TJ, Hang M, Huynh V, Thorp HH (2007) The role of proton coupled electron transfer (PCET) in water oxidation by photosystem II. Wiring for protons. Angew Chem Int Ed 46(28):5284–5304

    Article  CAS  Google Scholar 

  • Müh F, Glöckner C, Hellmich J, Zouni A (2012) Light-induced quinone reduction in photosystem II. Biochim Biophys Acta 1817:44–65

    Article  PubMed  Google Scholar 

  • Noguchi T (2015) Fourier transform infrared difference and time-resolved infrared detection of the electron and proton transfer dynamics in photosynthetic water oxidation. Biochim Biophys Acta 1847:35–45

    Article  CAS  PubMed  Google Scholar 

  • Papageorgiou GC, Govindjee (eds) (2004) Chlorophyll a fluorescence: a signature of photosynthesis. Advances in photosynthesis and respiration, vol 19. Springer, Dordrecht

    Google Scholar 

  • Papageorgiou GC, Tsimilli-Michael M, Stamatakis K (2007) The fast and slow kinetics of chlorophyll fluorescence induction in plants, algae and cyanobacteria: a viewpoint. Photosynth Res 94:275–290

    Article  CAS  PubMed  Google Scholar 

  • Renger G (2001) Photosynthetic water oxidation to molecular oxygen: apparatus and mechanism. Biochim Biophys Acta 1503:210–228

    Article  CAS  PubMed  Google Scholar 

  • Renger G (2004) Coupling of electron and proton transfer in oxidative water cleavage in photosynthesis. Biochim Biophys Acta 1655:195–204

    Article  CAS  PubMed  Google Scholar 

  • Renger G (2007) Oxidative photosynthetic water splitting: energetics, kinetics and mechanism. Photosynth Res 92:407–425

    Article  CAS  PubMed  Google Scholar 

  • Renger G (2012) Mechanism of light induced water splitting. In Photosystem II of oxygen evolving photosynthetic organisms. Biochim Biophys Acta 1817:1164–1176

    Article  CAS  PubMed  Google Scholar 

  • Renger G, Holzwarth AR (2005) Primary electron transfer. In: Wydrzynski TJ, Satoh K (eds) Photosystem II: the light-driven water: plastoquinone oxidoreductase. Springer, Berlin, pp 139–175

    Google Scholar 

  • Renger G, Renger T (2008) Photosystem II, the machinery of photosynthetic water splitting. Photosynth Res 98:53–81

    Article  CAS  PubMed  Google Scholar 

  • Renger G, Schulze A (1985) Quantitative analysis of fluorescence induction curves in isolated spinach chloroplasts. Photobiochem Photobiophys 9:79–87

    CAS  Google Scholar 

  • Renger G, Eckert HJ, Bergmann A, Bernarding J, Liu B, Napiwotzki A, Reifarth F, Eichler HJ (1995) Fluorescence and spectroscopic studies on exciton trapping and electron transfer in photosystem II of higher plants. Aust J Plant Physiol 22:167–181

    Article  CAS  Google Scholar 

  • Reynolds IA, Johnson EA, Tanford C (1985) Incorporation of membrane potential into theoretical analysis of electrogenic ion pumps. Proc Natl Acad Sci USA 82:6869–6873

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Riznichenko GYu, Lebedeva GV, Demin OV, Rubin AB (1999) Kinetic mechanisms of biological regulation in photosynthetic organisms. J Biol Phys 25:177–192

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Roelofs TA, Lee CH, Holzwarth AR (1992) Global target analysis of picosecond chlorophyll fluorescence kinetic from pea chloroplasts. Biophys J 61:1147–1163

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rubin A, Riznichenko G (2009) Modeling of the primary processes in a photosynthetic membrane. In: Laisk A, Nedbal L, Govindjee (eds) Photosynthesis in silico: understanding complexity from molecules to ecosystems, advances in photosynthesis and respiration, vol 29. Springer, Dordrecht, pp 151–176

    Chapter  Google Scholar 

  • Rutherford AW, Crofts AR, Inoue Y (1982) Thermoluminescence as a probe of photosystem II photochemistry—the origin of the flash-induced glow peaks. Biochim Biophys Acta 682:457–465

    Article  CAS  Google Scholar 

  • Samson G, Bruce D (1996) Origins of the low yield of chlorophyll fluorescence induced by single turnover flash in spinach thylakoids. Biochim Biophys Acta 1276:147–153

    Article  Google Scholar 

  • Schatz GH, Brock H, Holzwarth AR (1988) Kinetic and energetic model for the primary processes in photosystem II. Biophys J 54:397–405

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Schödel R, Hillmann F, Schrötter T, Irrgang K-D, Voigt J, Renger G (1996) Kinetics of excited states of pigment clusters in solubilized light-harvesting complex II: photon density-dependent fluorescence yield and transmittance. Biophys J 71:3370–3380

    Article  PubMed Central  PubMed  Google Scholar 

  • Schödel R, Irrgang K-D, Voigt J, Renger G (1998) Rate of carotenoid triplet formation in solubilized light harvesting complex II (LHCII) from spinach. Biophys J 75:3143–3153

    Article  PubMed Central  PubMed  Google Scholar 

  • Schreiber U, Schliwa U, Bilger W (1986) Continuous recording of photochemical and non-photochemical chlorophyll fluorescence quenching with a new type of modulation fluorometer. Photosynth Res 10:51–62

    Article  CAS  PubMed  Google Scholar 

  • Semenov AYu, Cherepanov DA, Mamedov MD (2008) Electrogenic reactions and dielectric properties of photosystem II. Photosynth Res 98:121–130

    Article  CAS  PubMed  Google Scholar 

  • Shevela D, Eaton-Rye JJ, Shen J-R, Govindjee (2012) Photosystem II and the unique role of bicarbonate: a historical perspective. Biochim Biophys Acta 1817:1134–1151

    Article  CAS  PubMed  Google Scholar 

  • Steffen R (2003) Time-resolved spectroscopic investigations of photosystem II. PhD thesis. Berlin

  • Steffen R, Christen G, Renger G (2001) Time-resolved monitoring of flash-induced changes of fluorescence quantum yield and decay of delayed light emission in oxygen-evolving photosynthetic organisms. Biochemistry 40:173–180

    Article  CAS  PubMed  Google Scholar 

  • Steffen R, Eckert H-J, Kelly AA, Dörmann PG, Renger G (2005) Investigations on the reaction pattern of photosystem II in leaves from Arabidopsis thaliana by time-resolved fluorometric analysis. Biochemistry 44:3123–3132

    Article  CAS  PubMed  Google Scholar 

  • Stirbet A, Govindjee N (2012) Chlorophyll a fluorescence induction: a personal perspective of the thermal phase, the J-I–P rise. Photosynth Res 113:15–61

    Article  CAS  PubMed  Google Scholar 

  • Stirbet A, Govindjee Strasser BJ, Strasser RJ (1998) Chlorophyll a fluorescence induction in higher plants: modeling and numerical simulation. J Theor Biol 193:131–151

    Article  CAS  Google Scholar 

  • Stirbet AD, Rosenau Ph, Ströder AC, Strasser RJ (2001) Parameter optimisation of fast chlorophyll fluorescence induction model. Math Comput Simul 56:443–450

    Article  Google Scholar 

  • Strasser RJ, Tsimilli-Michael M, Srivastava A (2004) Analysis of the chlorophyll fluorescence transient. In: Papageorgiou GC, Govindjee (eds) Chlorophyll fluorescence: a signature of photosynthesis. Advances in photosynthesis and respiration, vol 19. Springer, Dordrecht, pp 321–362

    Chapter  Google Scholar 

  • Strasser RJ, Tsimilli-Michael M, Qiang S, Goltsev V (2010) Simultaneous in vivo recording of prompt and delayed fluorescence and 820-nm reflection changes during drying and after rehydration of the resurrection plant Haberlea rhodopensis. Biochim Biophys Acta 1797:1313–1326

    Article  CAS  PubMed  Google Scholar 

  • Tikhonov AN (2012) Energetic and regulatory role of proton potential in chloroplasts. Biochemistry (Moscow) 77:956–974

    Article  CAS  Google Scholar 

  • Tikhonov AN (2013) pH-dependent regulation of electron transport and ATP synthesis in chloroplasts. Photosynth Res 116:511–534

    Article  CAS  PubMed  Google Scholar 

  • Umena Y, Kawakami K, Shen J-R, Kamiya N (2011) Crystal structure of oxygen-evolving photosystem II at a resolution of 1.9 Å. Nature 473(7345):55–60

    Article  CAS  PubMed  Google Scholar 

  • van Kooten O, Snel JFH, Vredenberg WJ (1986) Photosynthetic free energy transduction to the electric potential changes across the thylakoid membrane. Photosynth Res 9:211–227

    Article  PubMed  Google Scholar 

  • Vredenberg WJ (2000) A 3-state model for energy trapping and fluorescence in PS II incorporating radical pair recombination. Biophys J 79:26–38

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Vredenberg WJ (2011) Kinetic analysis and mathematical modeling of primary photochemical and photoelectrochemical processes in plant photosystems. BioSystems 103:139–151

    Article  Google Scholar 

  • Wydrzynski T, Satoh K (eds) (2005) Photosystem II: light-induced water: Plastoquinone oxidoreductase, advances in photosynthesis and respiration, vol 22. Springer, Dordrecht

    Google Scholar 

  • Zhu XG, Govindjee Baker NR, deSturler E, Ort DR, Long SP (2005) Chlorophyll a fluorescence induction kinetics in leaves predicted from a model describing each discrete step of excitation energy and electron transfer associated with photosystem II. Planta 223:114–133

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the RFBR 11-04-01268-a, 14-04-01536, by BMBF RUS 10/026, 11/014, BMBF project “Quantum” (FKZ 13N10076) and by COST action MP1205. We are grateful to Prof. A.A. Bulychev for fruitful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. E. Belyaeva.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belyaeva, N.E., Schmitt, FJ., Paschenko, V.Z. et al. Modeling of the redox state dynamics in photosystem II of Chlorella pyrenoidosa Chick cells and leaves of spinach and Arabidopsis thaliana from single flash-induced fluorescence quantum yield changes on the 100 ns–10 s time scale. Photosynth Res 125, 123–140 (2015). https://doi.org/10.1007/s11120-015-0163-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11120-015-0163-4

Keywords

Navigation