An artificial neural network model for estimating Mentha crop biomass yield using Landsat 8 OLI

Abstract

Yield forecasting is essential for management of the food and agriculture economic growth of a country. Artificial Neural Network (ANN) based models have been used widely to make precise and realistic forecasts, especially for the nonlinear and complicated problems like crop yield prediction, biomass change detection and crop evapo-transpiration examination. In the present study, various parameters viz. spectral bands of Landsat 8 OLI (Operational Land Imager) satellite data and derived spectral indices along with field inventory data were evaluated for Mentha crop biomass estimation using ANN technique of Multilayer Perceptron. The estimated biomass showed a good relationship (R2 = 0.762 and root mean square error (RMSE) = 2.74 t/ha) with field-measured biomass.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Bairagi, G. D., & Hassan, Z. U. (2002). Wheat crop production estimation using satellite data. Journal of the Indian Society of Remote Sensing,30(4), 213.

    Article  Google Scholar 

  2. Bannari, A., Asalhi, H. & Teillet, P. M. (2002). Transformed difference vegetation index (TDVI) for vegetation cover mapping. In Geoscience and remote sensing symposium, 2002. IGARSS’02. 2002 IEEE International, 5, (pp. 3053–3055). IEEE.

  3. Bannari, A., Morin, D., Bonn, F., & Huete, A. R. (1995). A review of vegetation indices. Remote sensing reviews,13(1–2), 95–120.

    Article  Google Scholar 

  4. Bolton, D. K., & Friedl, M. A. (2013). Forecasting crop yield using remotely sensed vegetation indices and crop phenology metrics. Agricultural and Forest Meteorology,173, 74–84.

    Article  Google Scholar 

  5. Bredemeier, C., Variani, C., Almeida, D., & Rosa, A. T. (2013). Estimation of productive potential in wheat using active optical sensor for variable rate nitrogen fertilization. Rural Science,43(7), 1147–1154.

    Article  Google Scholar 

  6. Chivasa, W., Mutanga, O., & Biradar, C. (2017). Application of remote sensing in estimating maize grain yield in heterogeneous African agricultural landscapes: a review. International Journal of Remote Sensing,38(23), 6816–6845.

    Article  Google Scholar 

  7. Eddy, P. R., Smith, A. M., Hill, B. D., Peddle, D. R., Coburn, C. A., & Blackshaw, R. E. (2008). Hybrid segmentation: artificial neural network classification of high resolution hyperspectral imagery for site-specific herbicide management in agriculture. Photogrammetric Engineering and Remote Sensing,74, 1249–1257.

    Article  Google Scholar 

  8. Eitel, J. U. H., Long, D. S., Gessler, P. E., & Hunt, E. R. (2008). Combined spectral index to improve ground-based estimates of nitrogen status in dryland wheat. Agronomy Journal,100(6), 1694–1702.

    CAS  Article  Google Scholar 

  9. Huete, A. R. (1988). A soil adjusted vegetation index (SAVI). Remote Sensing Environment,25, 295–309.

    Article  Google Scholar 

  10. Huete, A., Didan, K., Miura, T., Rodriguez, E. P., Gao, X., & Ferreira, L. G. (2002). Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sensing of Environment,83(1–2), 195–213.

    Article  Google Scholar 

  11. Jackson, R. D., & Huete, A. R. (1991). Interpreting vegetation indices. Preventive veterinary medicine,11(3–4), 185–200.

    Article  Google Scholar 

  12. Jain, M., Mondal, P., DeFries, R. S., Small, C., & Galford, G. L. (2013). Mapping cropping intensity of smallholder farms: A comparison of methods using multiple sensors. Remote Sensing Environment,134, 210–223.

    Article  Google Scholar 

  13. Jiang, D., Yang, X., Clinton, N., & Wang, N. (2004). An artificial neural network model for estimating crop yields using remotely sensed information. International Journal of Remote Sensing,25, 1723–1732.

    Article  Google Scholar 

  14. Jordan, C. F. (1969). Derivation of leaf area index from quality of light on the forest floor. Ecology,50, 663–666.

    Article  Google Scholar 

  15. Kauth, R. J. & Thomas, G. S. (1976). The tasselled cap: A graphic description of the spectral-temporal development of agricultural crops as seen by Landsat. In LARS Symposia, (p. 159).

  16. Khan, M. S., Semwal, M., Verma, R. K., & Sharma, A. (2017). Menthol mint crop yield estimation using Landsat 8 Satellite data in Barabanki District, Uttar Pradesh. In Proceedings of National Seminar on Healthy Soil for Healthy Life, 5 December 2017, Lucknow Chapter ISSS, pp. 30–36.

  17. Khanuja, S. P. S., Kalra, A., & Singh, A. K. (2005). Medicinal and aromatic plants: Gain from entrepreneurship. Hindu Survey of Indian Agriculture, 191–194.

  18. Kumar, S., Bansal, R. P., Yadav, R. P., Singh, A. K., & Khanuja, S. P. S. (2008b). Aroma economics towards rural development: A case study of geranium in Uttarkhand hills. Journal of Rural Technology, 3(6).

  19. Kumar, S., Srivastava, R. K., Singh, A. K., Kalra, A., Tomar, V. K. S., & Bansal, R. P. (2001). Higher yields and profits from new crop rotations permitting integration of mediculture with agriculture in the Indo-Gangetic plains. Current Science,80, 563–566.

    Google Scholar 

  20. Kumar, S., Suresh, R., Singh, V., & Singh, A. K. (2011). Economic analysis of menthol mint cultivation in Uttar Pradesh: A case study of Barabanki district. Agricultural Economics Research Review,24, 345–350.

    Google Scholar 

  21. Kumar, S., Yadav, R. P., & Singh, A. K. (2008a). Potential and business opportunities in essential oil sector. Journal of Medicinal and Aromatic Plant Sciences,30, 336–339.

    Google Scholar 

  22. Lamba, V., & Dhaka, V. S. (2014). Wheat yield prediction using artificial neural network and crop prediction techniques. International Journal for Research in Applied Science and Engineering Technology,2(4), 330–341.

    Google Scholar 

  23. Padalia, R. C., Verma, R. S., Chauhan, A., Sundaresan, V., & Chanotiya, C. S. (2013). Essential oil composition of sixteen elite cultivars of Mentha from western Himalayan region, India. Maejo International Journal of Science and Technology,7, 83–93.

    CAS  Google Scholar 

  24. Pandey, L., & Reddy, A. A. (2012). Farm productivity and rural poverty in Uttar Pradesh: A regional perspective. Agricultural Economics Research Review,25(1), 25.

    Google Scholar 

  25. Paswan, R. P., & Begum, S. A. (2013). Regression and neural networks models for prediction of crop production 1. International Journal of Scientific & Engineering Research,4(9), 98–108.

    Google Scholar 

  26. Qi, J., Chehbouni, A., Huete, A. R., Kerr, Y. H., & Sorooshian, S. (1994). A modified soil adjusted vegetation index. Remote Sensing of Environment,48(2), 119–126.

    Article  Google Scholar 

  27. Ram, M., & Kumar, S. (1997). Yield improvement in the regenerated and transplanted mint Mentha arvensis by recycling the organic wastes and manures. Bioresource Technology,59, 141–149.

    CAS  Article  Google Scholar 

  28. Ram, M., & Kumar, S. (1998). Yield and resource use optimization in late transplanted mint (Mentha arvensis) under subtropical conditions. Journal of Agronomy and Crop Science,180, 109–112.

    CAS  Article  Google Scholar 

  29. Rao, P. K., Rao, V. V., & Venkataratnam, L. (2002). Remote sensing: A technology for assessment of sugarcane crop acreage and yield. Sugar Tech,4(3–4), 97–101.

    Article  Google Scholar 

  30. Richardson, A. J., & Wiegand, C. (1977). Distinguishing vegetation from soil background information. Photogrammetric Engineering & Remote Sensing,43, 1541–1552.

    Google Scholar 

  31. Singh, A. K., & Khanuja, S. P. S. (2007). CIMAP initiatives for menthol mint. Spice India,20, 14–17.

    Google Scholar 

  32. Singh, V. P., Singh, M., & Singh, D. V. (1998). Growth, yield and quality of peppermint (Mentha x piperita L.) as influenced by planting time. Journal of Herbs, Spices & Medicinal Plants,5, 33–39.

    Article  Google Scholar 

  33. Singh, M., Singh, A., Singh, S., & Ram, M. (2011). Evaluation of alternate menthol mint (Mentha arvensis L.) based intensive cropping systems for Indo-Gangetic plains of north India. Archives of Agronomy and Soil Science,58, 411–421.

    Article  Google Scholar 

  34. Srivastava, R. (2013). The mint that grows profits for farmers! The Hindustan Times, 29 April 2013. Retrieved March, 2018 from https://www.hindustantimes.com/lucknow/the-mint-that-grows-profits-for-farmers/story-aeaOnQL9NAHjwJb18gJbLM.html.

  35. Tucker, C. J. (1979). Red and photographic infrared linear combinations for monitoring vegetation. Remote Sensing of Environment,8, 127–150.

    Article  Google Scholar 

  36. Vimal, S. (2014). Profitability of mentha oil futures for farmers. International Journal of Management, MIT College of Management,2, 44–48.

    Google Scholar 

  37. Welikhe, P., Quansah, J. E., Fall, S., & Elhenney, W Mc. (2017). Estimation of soil moisture percentage using LANDSAT-based moisture stress index. Journal of Remote Sensing and GIS,6, 200.

    Article  Google Scholar 

  38. Zhang, W. J., Bai, C. J., & Liu, G. D. (2007). Neural network modelling of ecosystems: A case study on cabbage growth system. Ecological Modelling,201, 317–325.

    Article  Google Scholar 

Download references

Acknowledgements

The present work was carried out as a part of Council of Scientific and Industrial Research Network Project (BSC 0203). The authors wish to acknowledge Director CSIR-Central Institute of Medicinal and Aromatic Plants for providing support to carry out the research work. Authors are also thankful to the anonymous reviewers for their careful reading of the manuscript and insightful suggestions.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Manoj Semwal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Khan, M.S., Semwal, M., Sharma, A. et al. An artificial neural network model for estimating Mentha crop biomass yield using Landsat 8 OLI. Precision Agric 21, 18–33 (2020). https://doi.org/10.1007/s11119-019-09655-9

Download citation

Keywords

  • Aromatic crops
  • Mentha
  • Neural network
  • Crop modelling
  • Spectral indices
  • Yield estimation