Skip to main content

Detection of bacterial wilt infection caused by Ralstonia solanacearum in potato (Solanum tuberosum L.) through multifractal analysis applied to remotely sensed data

Abstract

Potato bacterial wilt, caused by the bacterium Ralstonia solanacearum race 3 biovar 2 (R3bv2), affects potato production in several regions in the world. The disease becomes visually detectable when extensive damage to the crop has already occurred. Two greenhouse experiments were conducted to test the capability of a remote sensing diagnostic method supported by multispectral and multifractal analyses of the light reflectance signal, to detect physiological and morphological changes in plants caused by the infection. The analysis was carried out using the Wavelet Transform Modulus Maxima (WTMM) combined with the Multifractal (MF) analysis to assess the variability of high-resolution temporal and spatial signals and the conservative properties of the processes across temporal and spatial scales. The multispectral signal, enhanced by multifractal analysis, detected both symptomatic and latently infected plants, matching the results of ELISA laboratory assessment in 100 and 82%, respectively. Although the multispectral method provided no earlier detection than the visual assessment on symptomatic plants, the former was able to detect asymptomatic latent infection, showing a great potential as a monitoring tool for the control of bacterial wilt in potato crops. Applied to precision agriculture, this capability of the remote sensing diagnostic methodology would provide a more efficient control of the disease through an early and full spatial assessment of the health status of the crop and the prevention of spreading the disease.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Agrios, G. N. (2005). Plant pathology (5th ed.). San Diego, CA: Academic Press.

    Google Scholar 

  2. Allen, C., Kelman, A., & French, E. R. (2001). Brown rot of potatoes. In W. R. Stevenson, R. Loria, G. D. Franc, & D. P. Weingartner (Eds.), Compendium of potato diseases (pp. 11–13). St. Paul, MN: The American Phytopathological Society.

    Google Scholar 

  3. Arneodo, A., Bacry, E., Graves, P. V., & Muzzy, J. F. (1995). Characterizing long-range correlations in DNA sequences from wavelet analysis. Physical Review Letters, 74(16), 3293–3296.

    PubMed  Article  CAS  Google Scholar 

  4. Bacry, E., Muzy, J. F., & Arnéodo, A. (2003). Singularity spectrum of fractal signals from wavelet analysis: Exact results. Journal of Statistical Physics, 70(3–4), 635–674.

    Google Scholar 

  5. Blackburn, G. A., & Ferwerda, J. G. (2008). Retrieval of chlorophyll concentration from leaf reflectance spectra using wavelet analysis. Remote Sensing of Environment, 112(4), 1614–1632.

    Article  Google Scholar 

  6. Broge, N. H., & Leblanc, E. (2000). Comparing prediction power and stability of broadband and hyperspectral vegetation indices for estimation of green leaf area index and canopy chlorophyll density. Remote Sensing of Environment, 76(2), 156–172.

    Article  Google Scholar 

  7. Buchanan-Wollaston, V. (1997). The molecular biology of leaf senescense. Journal of Experimental Botany, 48(2), 181–199.

    Article  Google Scholar 

  8. Byalovskii, Y. Y., Bulatetskii, S. V., & Suchkova, Z. V. (2005). Heart rate variability and fractal neurodynamics during local magnetic vibroacoustic treatment. Human Physiology, 31(4), 413–420. Translated from Fiziologiya Cheloveka, 431(414), 450–460.

    Google Scholar 

  9. CABI. (2003). Crop protection compendium: Global module (5th ed.). Wallingford, UK: CAB International.

    Google Scholar 

  10. Chávez, P., Yarlequé, C., Piro, O., Posadas, A., Mares, V., Loayza, H., et al. (2010). Applying multifractal analysis to remotely sensed data for assessing PYVV infection in potato (Solanum tuberosum L.) crops. Remote Sensing Journal, 2(5), 1197–1216.

    Article  Google Scholar 

  11. Chávez, P., Zorogastúa, P., Chuquillanqui, C., Salazar, L. F., Mares, V., & Quiroz, R. (2009). Assessing Potato Yellow Vein Virus (PYVV) infection using remotely sensed data. International Journal of Pest Management, 55, 251–256.

    Article  Google Scholar 

  12. Chhabra, A. B., Jensen, R. V., & Sreenivasan, K. R. (1989a). Extraction of underlying multiplicative processes from multifractals via the thermodynamic formalism. Physical Review A, 40(8), 4593–4611.

    PubMed  Article  Google Scholar 

  13. Chhabra, A. B., Meneveu, C., Jensen, R. V., & Sreenivasan, K. R. (1989b). Direct determination of the f(a) singularity spectrum and its application to fully developed turbulence. Physical Review A, 40(9), 5284–5294.

    PubMed  Article  Google Scholar 

  14. Chiwaki, K., Nagamori, S., & Inoue, Y. (2005). Predicting bacterial wilt disease of tomato plants using remotely sensed thermal imagery. Journal of Agricultural Meteorology, 61, 153–164.

    Article  Google Scholar 

  15. CIP-International Potato Center. (2008). Review of nematology activities at CIP (p. 16). https://research.cip.cgiar.org/confluence/download/attachments/16679035/Report+on+Nematology+at+CIP+1999+Author+Maria+Scurrah+-1.pdf?version=1. Accessed 1 March 2010.

  16. Cook, D., Barlow, E., & Sequeira, L. (1989). Genetic diversity of Pseudomonas solanacearum: Detection of restriction fragment length polymorphism with DNA probes that specify virulence and the hypersensitive response. Molecular Plant-Microbe Interactions, 2, 113–121.

    Article  Google Scholar 

  17. Cook, D., & Sequeira, L. (1994). Strain differentiation of Pseudomonas solanacearum by molecular genetic methods. In A. C. Hayward & G. L. Hatman (Eds.), Bacterial Wilt: The disease and its causative agent, Pseudomonas solanacearum (pp. 77–93). Wallingford, UK: CAB International.

    Google Scholar 

  18. Crippen, R. E. (1990). Calculating the vegetation index faster. Remote Sensing of Environment, 34(1), 71–73.

    Article  Google Scholar 

  19. Daughtry, C. S. T., Walthall, C. L., Kim, M. S., Brown de Colstoun, E., & McMurtrey III, J. E. (2000). Estimating corn leaf chlorophyll concentration from leaf and canopy reflectance. Remote Sensing of Environment, 74(2), 229–239.

    Article  Google Scholar 

  20. Elphinstone, J. G. (1996). Survival and possibilities for extinction of Pseudomonas solanacearum (Smith) in cool climates. Potato Research, 39, 403–410.

    Article  Google Scholar 

  21. Fock, I., Collonnier, C., Luisetti, J., Purwito, A., Souvannavong, V., Vedel, F., et al. (2001). Use of Solanum stenotomum for introduction of resistance to bacterial wilt in somatic hybrids of potato. Plant Physiology and Biochemistry, 39, 899–908.

    Article  CAS  Google Scholar 

  22. French, E. R., Gutarra, L., Aley, P., & Elphinstone, J. (1995). Culture media for Pseudomonas solanacearum: Isolation, identification and maintenance. Fitopatologia, 30, 126–130.

    Google Scholar 

  23. Gamon, J. A., Peñuelas, J., & Field, C. B. (1992). A narrow-waveband spectral index that tracks diurnal changes in photosynthetic efficiency. Remote Sensing of Environment, 41(1), 35–44.

    Article  Google Scholar 

  24. Grimault, V., Gelie, B., Lemattre, M., Prior, P., & Schmit, J. (1994). Comparative histology of resistant and susceptible tomato cultivars infected by Pseudomonas solanacearum. Physiological and Molecular Plant Pathology, 44, 105–123.

    Article  Google Scholar 

  25. Habashy, W. H. S., Fawzi, F. G., El-Huseiny, T. M., & Neweigy, N. A. (1993). Bacterial wilt of potatoes. II. Sensitivity of the pathogen to antibiotics and pathogenesis by streptomycin-resistant mutants. Egyptian Journal of Agricultural Research, 71, 401–412.

    Google Scholar 

  26. Haboudane, D., Miller, J. R., Tremblay, N., Zarco-Tejada, P. J., & Dextraze, L. (2002). Integrated narrowband vegetation indices for prediction of crop chlorophyll content for application to precision agriculture. Remote Sensing of Environment, 81(2–3), 416–426.

    Article  Google Scholar 

  27. Haboudane, D., Miller, J. R., Pattey, E., Zarco-Tejada, P. J., & Strachan, I. B. (2004). Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: Modeling and validation in the context of precision agriculture. Remote Sensing of Environment, 90(3), 337–352.

    Article  Google Scholar 

  28. Halsey, T. C., Jensen, M. H., Kanadoff, L. P., Procaccia, I., & Shraiman, B. (1986). Fractal measures and their singularities: The characterization of strange sets. Physical Review A, 33(2), 1141–1151.

    PubMed  Article  Google Scholar 

  29. Hartman, G. L., & Elphinstone, J. G. (1994). Advances in the control of Pseudomonas solanacearum Race 1 in major food crops. In A. C. Hayward & G. L. Hatman (Eds.), Bacterial Wilt: The disease and its causative agent, Pseudomonas solanacearum (pp. 157–177). Wallingford, UK: CAB International.

    Google Scholar 

  30. Hayward, A. C. (1964). Characteristics of Pseudomonas solanacearum. Journal of Applied Bacteriology, 27, 265–277.

    Article  Google Scholar 

  31. Hayward, A. C. (1991). Biology and epidemiology of bacterial wilt caused by Pseudomonas solanacearum. Annual review of Phytopathology, 29, 65–87.

    PubMed  Article  CAS  Google Scholar 

  32. Hernández, Y., Marino, N., Trujillo, G., & Urbina de Navarro, C. (2005). Invasión de Ralstonia solanacearum en tejidos de tallos de tomate (Lycopersicon esculentum Mill). Revista de la Facultad de Agronomía, 22(2), 185–194.

    Google Scholar 

  33. Huete, A. R. (1988). A soil-adjusted vegetation index (SAVI). Remote Sensing of Environment, 25(3), 295–309.

    Article  Google Scholar 

  34. Inoue, Y. (1990). Remote detection of physiological depression in crop plants with infrared thermal imagery. Japanese Journal of Crop Science, 59, 762–768.

    Article  Google Scholar 

  35. Ivanov, P. C., Nunes Amaral, L. A., Goldberger, A. L., Havlin, S., Rosenblum, M. G., Struzik, Z. R., et al. (1999). Multifractality in human heartbeat dynamics. Nature, 399, 461–465.

    PubMed  Article  CAS  Google Scholar 

  36. Jaffard, S. (2004). Wavelet techniques in multifractal analysis, fractal geometry and applications. In: AMS (Ed.), Proceedings of symposia in pure mathematics (pp. 91–152). Providence, RI.

  37. Janse, J. D. (1996). Potato brown rot in Western Europe—History, present occurrence and some remarks on possible origin, epidemiology and control strategies. Bulletin OEPP, 26, 679–695.

    Google Scholar 

  38. Latka, M., Glaubic-Latka, M., Latka, D., & West, B. (2002). The loss of multifractality in migraines. http://arxiv.org/PS_cache/physics/pdf/0204/0204010v1.pdf.

  39. López, M. M., & Biosca, E. G. (2004). Potato bacterial wilt management: New prospects for an old problem. In C. Allen, P. Prior, & A. C. Hayward (Eds.), Bacterial wilt disease and the Ralstonia species complex (pp. 205–224). St. Paul, MN: APS Press.

    Google Scholar 

  40. McAteer, R. T. J., Young, C. A., Ireland, J., & Gallagher, P. T. (2007). The bursty nature of solar flare X-ray emission. The Astrophysical Journal, 662, 691–700.

    Article  CAS  Google Scholar 

  41. Mendoza, H. A. (1994). Development of potatoes with multiple resistance to biotic and abiotic stresses: The International Potato Center Approach. In G. W. Zehnder, M. L. Powelson, & R. Jansson (Eds.), Advances in potato pest biology and management (pp. 627–642). St. Paul, MN: American Phytopathological Society.

    Google Scholar 

  42. Murakoshi, S., & Takahashi, M. (1984). Trials of some control of tomato wilt caused by Pseudomonas solanacearum. Bulletin of the Kanagawa Horticultural Experiment Station, 31, 50–56.

    Google Scholar 

  43. Muzy, J. F., Bacry, E., & Arneodo, A. (1991). Wavelets and multifractal formalism for singular signals: Application to turbulence data. Physical Review Letters, 67, 3515–3518.

    PubMed  Article  Google Scholar 

  44. Parrott, N., & Kalibwani, F. (2004). Organic agriculture in the continents, Africa. In H. Willer & M. Yussefi (Eds.), The world of organic agriculture statistics and emerging trends (pp. 55–68). Bonn, Germany: International Federation of Organic Agriculture Movements.

    Google Scholar 

  45. Polikar, R. (1996). The wavelet tutorial. http://users.rowan.edu/~polikar/WAVELETS/WTpart1.html. Accessed 1 March 2010.

  46. Posadas, A. N. D., Giménez, D., Quiroz, R. A., & Protz, R. (2003). Multifractal characterization of soil pore systems. Soil Science Society of America Journal, 67, 1361–1369.

    Article  CAS  Google Scholar 

  47. Posadas, A. N. D., Quiroz, R., Zorogastúa, P., & León-Velarde, C. (2005). Multifractal characterization of the spatial distribution of Ulexite in a Bolivian salt flat. International Journal of Remote Sensing, 26, 615–627.

    Article  Google Scholar 

  48. Prior, P., & Fegan, M. (2005). Recent developments in the phylogeny and classification of Ralstonia solanacearum. Acta Horticulturae (ISHS), 695, 127–136.

    CAS  Google Scholar 

  49. Priou, S., Gutarra, L., & Aley, P. (1999). Highly sensitive detection of Ralstonia solanacearum in latently infected potato tubers by post-enrichment enzyme-linked immunosorbent assay on nitrocellulose membrane. EPPO/OEPP Bulletin, 29, 117–125.

    Google Scholar 

  50. Rondeaux, G., Steven, M., & Baret, F. (1996). Optimization of soil-adjusted vegetation indices. Remote Sensing of Environment, 55(2), 95–107.

    Article  Google Scholar 

  51. Rouse, J. W., Haas, R. H., Schell, J. A., Deering, D. W., & Harlan, J. C. (1974). Monitoring the vernal advancement of retrogradation (green wave effect) of natural vegetation. Final Report, Type III, NASA/GSFC, Greenbelt, MD, p. 371.

  52. Schaad, N. W. (1988). Laboratory guide for identification of plant pathogenic bacteria (164 pp.). St. Paul, MN: American Phytopathological Society.

  53. Schertzer, D., & Lovejoy, S. (1989). Nonlinear variability in geophysics: Multifractal analysis and simulation. In L. Pietronero (Ed.), Fractals: Physical origin and consequences (pp. 49–79). New York: Plenum.

    Google Scholar 

  54. Schertzer, D., & Lovejoy, S. (2004). Uncertainty and predictability in geophysics: Chaos and multifractal insights. In R. S. J. Sparks & C. J. Hawkesworth (Eds.), State of the planet, frontiers and challenges in geophysics (pp. 317–334). Washington DC: American Geophysical Union.

    Chapter  Google Scholar 

  55. Shannon, C. E., & Weaver, W. (1949). The mathematical theory of communication. Urbana, IL: University of Illinois Press.

    Google Scholar 

  56. Swanson, J. K., Yao, J., Tans-Kersten, J., & Allen, C. (2005). Behavior of Ralstonia solanacearum race 3 biovar 2 during latent and active infection of geranium. Phytopathology, 95, 136–143.

    PubMed  Article  Google Scholar 

  57. Sylvander, B., & Le Floc’h-Wadel, A. (2000). Consumer demand and production of organics in the EU. AgBioForum, 3, 97–106.

    Google Scholar 

  58. University of Arizona. (2005). Remote sensing of vegetation. http://rangeview.arizona.edu/Tutorials/intro.asp. Accessed 9 May 2011.

  59. van Elsas, J. D., Kastelein, P., de Vries, P. M., & van Overbeek, L. S. (2001). Effects of ecological factors on the survival and physiology of Ralstonia solanacearum bv. 2 in irrigation water. Canadian Journal of Microbiology, 47, 842–854.

    PubMed  Google Scholar 

  60. van Elsas, J. D., Kastelein, P., van Bekkum, P., van der Wolf, J. M., de Vries, P. M., & van Overbeek, L. S. (2000). Survival of Ralstonia solanacearum biovar 2, the causative agent of potato brown rot, in field and microcosm soils in temperate climates. Phytopathology, 90, 1358–1366.

    PubMed  Article  Google Scholar 

  61. Vicsek, T. (1992). Fractal growth phenomena (2nd ed.). Singapore: Word Scientific Publishing Co.

    Google Scholar 

  62. Voss, R. F. (1988). Fractals in nature: From characterization to simulation. In H.-O. Peitgen & D. Saupe (Eds.), The science of fractal images (pp. 21–70). New York: Springer.

    Chapter  Google Scholar 

  63. Wada, M., Kagawa, T., & Sato, Y. (2003). Chloroplast movement. Annual Review of Plant Biology, 54, 455–468.

    PubMed  Article  CAS  Google Scholar 

  64. Weingartner, D. P., & Shumaker, J. R. (1988). In row injection of metham sodium and other soil fumigants for control of nematodes and soil borne potato diseases in Florida. 72nd Annual Meeting of the Potato Association of America, Fort Collins, Colorado, USA. American Potato Journal, 65, 504.

    Google Scholar 

  65. Williams, G. C. (1999). Pleiotropy, natural selection and the evolution of aging. Evolution, 11, 398–411.

    Article  Google Scholar 

  66. Williamson, L., Nakaho, K., Hudelson, B., & Allen, C. (2002). Ralstonia solanacearum race 3, biovar 2 strains isolated from geranium are pathogenic on potato. Plant Disease, 86, 987–991.

    Article  CAS  Google Scholar 

  67. Wolfinger, R. D., & Chang, M. (1998). Comparing the SAS GLM and MIXED procedures for repeated measures. Cary, NC: SUGI Proceedings.

  68. Yu, Z.-G., Anh, V., & Lau, K.-S. (2001). Multifractal characterisation of length sequences of coding and noncoding segments in a complete genome. Physica A: Statistical Mechanics and its Applications, 301, 351–361.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Support for this work was provided by the International Foundation for Science (IFS Grant 4068/-I), the Production Systems and the Environment Division of the International Potato Center (CIP) and the CIP-ALTAGRO project. The authors thank Eng. Liliam Gutarra from the Integrated Crop Management Division at CIP for her support on laboratory assessments, and to R.T.J. McAteer and collaborators for kindly sharing their wavelet-multifractal algorithm. P. Chávez gives special thanks to Arnauld A. Thiry for his permanent and unconditional support, and Drs. Salomón Helfgott and Vicente Rázuri from La Molina Agricultural University for their good advices.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Roberto Quiroz.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Chávez, P., Yarlequé, C., Loayza, H. et al. Detection of bacterial wilt infection caused by Ralstonia solanacearum in potato (Solanum tuberosum L.) through multifractal analysis applied to remotely sensed data. Precision Agric 13, 236–255 (2012). https://doi.org/10.1007/s11119-011-9242-5

Download citation

Keywords

  • Remote sensing diagnostic method
  • Visual monitoring
  • Multispectral analysis
  • Wavelet transform
  • Precision agriculture