Skip to main content

Advertisement

Log in

Measurements of cadmium in soil extracts using multi-variate data analysis and electrochemical sensors

  • Published:
Precision Agriculture Aims and scope Submit manuscript

Abstract

There is a growing awareness of potential health risks due to exposure to heavy metals. One source of uptake is via agriculture, when heavy metals in the soil are taken up by the crop. The metal cadmium holds a special position, since it is considered to be a health risk, even at the low concentrations observed in our food supply, furthermore, it is ranked as eight on the top 20 hazardous substances list. Two measurement systems are described based on stripping voltammetry for analysis of cadmium. One is based on a three metal direct probe system (TMDPS) with three working electrodes (platinum, gold and rhodium), combined with a polishing unit, the other is an automatic flow through system, using one working electrode of gold, also equipped with a polishing unit. A number of different soils were extracted with an ammonium-lactate solution and analyzed with the systems, and the data obtained were subjected to multi-variate data analysis (MVDA). Using modeling based on partial least square (PLS), concentrations of cadmium in the soil extracts could be predicted for the TMDPS in the concentration area 0.5–10 μg/l with a root mean square error of prediction (RMSEP) of 0.8 μg/l and a relative predicted deviation (RPV) of 2.0. One sample could be analyzed in 4 min. It was also shown that by using different PLS models, the concentration of the elements copper, aluminum, lead and iron could be predicted. The possibilities of using the technique for field use were also evaluated by studies of mixtures of different soils in 0.1 M HNO3 solution, the time for an analysis was, however, rather large, around 20 min.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Alriksson, A., & Eriksson, H. M. (2001). Distribution of Cd, Cu, Pb and Zn in soil and vegetation compartments in stands of five boreal tree species in N.E. Sweden. Water Air and Soil Pollution, 1, 461–475. doi:10.1023/A:1017586406593.

    Article  CAS  Google Scholar 

  • Bard, A. J., & Faulkner, L. R. (1980). Electrochemical methods–fundamentals and applications. New York, USA: Wiley.

    Google Scholar 

  • Barregård, B., Svalander, C., Schütz, A., Westberg, G., Sällsten, G., Blohmé, I., et al. (1999). Cadmium, mercury, and lead in kidney cortex of the general Swedish population: A study of biopsies from living kidney donors. Environmental Health Perspectives, 107, 867–871. doi:10.2307/3454473.

    Article  PubMed  Google Scholar 

  • Daniele, S., Bragato, C., & Baldo, A. M. (1997). An approach to the calibrationless determination of copper and lead by anodic stripping voltammetry at thin mercury film microelectrodes. Application to well water and rain. Analytica Chimica Acta, 346, 145–156. doi:10.1016/S0003-2670(97)00114-1.

    Article  CAS  Google Scholar 

  • Emons, H., Baade, A., & Schöning, M. J. (2000). Voltammetric determination of heavy metals in microvolumes of rain water. Electroanalysis, 15, 1171–1176. doi:10.1002/1521-4109(200010)12:15<1171::AID-ELAN1171>3.0.CO;2-T.

    Article  Google Scholar 

  • Eriksson, J., Andersson, A., & Andersson, R. (1997). Current status of Swedish arable soils. Swedish Environmental Protection Agency, Report 620-4778-7.

  • Eriksson, J., & Ledin, S. (1999). Changes in phytoavailability and concentration of cadmium in soil following long term salix cropping. Water Air and Soil Pollution, 114, 171–184. doi:10.1023/A:1005050005459.

    Article  CAS  Google Scholar 

  • Granero, S., & Domingo, J. L. (2002). Levels of metals in soils of Alcalá de Henares, Spain: Human health risks. Environment International, 28, 159–164. doi:10.1016/S0160-4120(02)00024-7.

    Article  PubMed  CAS  Google Scholar 

  • Kyaw, T., Ferguson, R. B., Adamchuk, V. I., Marx, D. B., Tarkalson, D. D., & McCallister, D. L. (2008). Delineating site-specific management zones for pH-induced iron chlorosis. Precision Agriculture, 9, 71–84. doi:10.1007/s11119-008-9059-z.

    Article  Google Scholar 

  • Lindqvist, O. (1995). Environmental impact of mercury and other heavy metals. Journal of Power Sources, 57, 3–7. doi:10.1016/0378-7753(95)02229-5.

    Article  CAS  Google Scholar 

  • Webster, R., & Oliver, M. A. (1992). Sample adequately to estimate variograms of soil properties. Journal of Soil Science, 43, 177–192. doi:10.1111/j.1365-2389.1992.tb00128.x.

    Article  Google Scholar 

  • Wetterlind, J., Stenberg, B., & Söderström, M. (2008). The use of near infrared (NIR) spectroscopy to improve soil mapping at the farm scale. Precision Agriculture, 9, 57–69. doi:10.1007/s11119-007-9051-z.

    Article  Google Scholar 

  • Wold, S., Esbensen, K., & Geladi, P. (1987). Principal component analysis: A tutorial. Chemometrics Intelligent Laboratory and Systems, 2, 37–52. doi:10.1016/0169-7439(87)80084-9.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Swedish Farmers’ Foundation for Agricultural Research, the VL foundation and S-SENCE of Linköping University are gratefully acknowledged for financial support. The Swedish Sensor Centre (S-SENCE) is supported with grants from the Swedish National Board for Industrial and Technical Development and Swedish Industry.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fredrik Winquist.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Winquist, F., Krantz-Rülcker, C., Olsson, T. et al. Measurements of cadmium in soil extracts using multi-variate data analysis and electrochemical sensors. Precision Agric 10, 231–246 (2009). https://doi.org/10.1007/s11119-008-9094-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11119-008-9094-9

Keywords

Navigation