Skip to main content
Log in

On the Cauchy Problem for Integro-Differential Equations in the Scale of Spaces of Generalized Smoothness

  • Published:
Potential Analysis Aims and scope Submit manuscript

Abstract

Parabolic integro-differential model Cauchy problem is considered in the scale of Lp -spaces of functions whose regularity is defined by a scalable Levy measure. Existence and uniqueness of a solution is proved by deriving apriori estimates. Some rough probability density function estimates of the associated Levy process are used as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bergh, J., Löfstrom, J.: Interpolation Spaces. An Introduction. Springer, Berlin (1976)

    Book  MATH  Google Scholar 

  2. Dong, H., Kim, D: On L p- estimates of non-local elliptic equations. J. Funct. Anal. 262, 1166–1199 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  3. Garcia-Cuerva, J., Rubio De Francia, J.L.: Weighted Norm Inequalities and Related Topics. North-Holland (1985)

  4. Farkas, W., Jacob, N., Schilling, R. L.: Function spaces related to continuous negative definite functions: ψ -Bessel potential spaces. Diss. Math., 1–60 (2001)

  5. Farkas, W., Leopold, H. -G.: Characterisation of function spaces of generalized smoothness. Annali di Matematica 185, 1–62 (2006)

    Article  MATH  Google Scholar 

  6. Kalyabin, G. A.: Description of functions in classes of Besov-Lizorkin-Triebel type. Trudy Mat. Inst. Steklov 156, 160–173 (1980)

    MATH  Google Scholar 

  7. Kalyabin, G. A., Lizorkin, P. I.: Spaces of functions of generalized smoothness. Math. Nachr. 133, 7–32 (1987)

    Article  MathSciNet  Google Scholar 

  8. Kim, I., Kim, K. -H.: An L p-theory for a class of non-local elliptic equations related to nonsymmetric measurable kernels. J. Math. Anal. Appl 434, 1302–1335 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  9. Kim, P., Song, R., Vondraček, Z.: Global uniform boundary Harnack principle with explicit decay rate and its application. Stoch. Proc. Appl. 124, 235–267 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  10. Kim, I., Kim, K. -H.: An L p,-boundedness of stochastic singular integral operators and its application to SPDEs, arXiv:1608.08728 (2016)

  11. Mikulevicius, R., Phonsom, C: On L p −theory for parabolic and elliptic integro-differential equations with scalable operators in the whole space, Stochastics and PDEs: Anal Comp, 2017, https://doi.org/10.1007/s40072-017-0095-4; arXiv:1605.07086 (2016)

  12. Stein, E.: Harmonic Analysis. Princeton University Press (1993)

  13. Triebel, H.: Interpolation Theory, Function Spaces. Differential Operators. North-Holland (1978)

  14. Xicheng, Zhang: L p-maximal regularity of nonlocal parabolic equations and applications. Ann. I.H. Poincaré-AN 30, 573–614 (2013)

    Article  MATH  Google Scholar 

Download references

Acknowledgments

We are very grateful to our reviewers for valuable comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Mikulevičius.

Appendix

Appendix

We will need the following Levy process moment estimate.

Lemma 17

Let\(\pi \in \mathfrak {A}^{\sigma }.\)Assume

$$ {\int}_{\left\vert z\right\vert \leq 1}\left\vert z\right\vert^{\alpha_{1}}\pi (dz)+{\int}_{\left\vert z\right\vert >1}\left\vert z\right\vert^{\alpha_{2}}\pi (dz)\leq M, $$
(1)

whereα1, α2 ∈ (0, 1] ifσ ∈ (0, 1); α1, α2 ∈ (1, 2] ifσ ∈ (1, 2); α1 ∈ (1, 2] andα2 ∈ [0, 1) ifσ = 1. Letζtbe the Levy process associated toψπ, that is

$$\mathbf{E}e^{i2\pi \xi \cdot \zeta_{t}}=\exp \{\psi \left( \xi \right) t\},t\geq 0 $$

There is a constantC = C (M) such that

$$\mathbf{E}\left[ \left\vert \zeta_{t}\right\vert^{\alpha_{2}}\right] \leq C\left( 1+t\right) ,t\geq 0. $$

Proof

Recall

$$ \zeta_{t}={{\int}_{0}^{t}}\int \chi_{\sigma }(y)yq(ds,dy)+{{\int}_{0}^{t}}\int (1-\chi_{\sigma }(y))yp(ds,dy),t\geq 0, $$
(2)

p(ds, dy) is Poisson point measure with

$$\mathbf{E}p\left( ds,dy\right) =\pi \left( dy\right) ds,q\left( ds,dy\right) =p\left( ds,dy\right) -\pi \left( dy\right) ds. $$

Now,\(\zeta _{t}=\bar {\zeta }_{t}+\tilde {\zeta }_{t}\) with

$$\begin{array}{@{}rcl@{}} \bar{\zeta}_{t} &=&{{\int}_{0}^{t}}{\int}_{\left\vert y\right\vert \leq 1}\chi_{\sigma }(y)yq(ds,dy)+{{\int}_{0}^{t}}{\int}_{\left\vert y\right\vert \leq 1}(1-\chi_{\sigma }(y))yp(ds,dy), \\ \tilde{\zeta}_{t} &=&{{\int}_{0}^{t}}{\int}_{\left\vert y\right\vert >1}\chi_{\sigma }(y)yq(ds,dy)+{{\int}_{0}^{t}}{\int}_{\left\vert y\right\vert >1}(1-\chi_{\sigma }(y))yp(ds,dy),t\geq 0. \end{array} $$
  1. Case 1:

    σ ∈ (0, 1). In this case (1) holds with α1, α2 ∈ (0, 1]. Then for any t >  0,

    $$\mathbf{E}\left\vert \bar{\zeta}_{t}\right\vert \leq t{\int}_{\left\vert y\right\vert \leq 1}\left\vert y\right\vert^{\alpha_{1}}\pi \left( dy\right) \leq Ct, $$

    and

    $$\left\vert \tilde{\zeta}_{t}\right\vert^{\alpha_{2}}=\sum\limits_{s\leq t}\left[ \left\vert \tilde{\zeta}_{s}\right\vert^{\alpha_{2}}-\left\vert \tilde{ \zeta}_{s-}\right\vert^{\alpha_{2}}\right] \leq {{\int}_{0}^{t}}{\int}_{\left\vert y\right\vert >1}\left\vert y\right\vert^{\alpha_{2}}p\left( ds,dy\right) $$

    implies that \(\mathbf {E}\left \vert \tilde {\zeta }_{t}\right \vert ^{\alpha _{2}}\leq Ct.\)

  2. Case 2:

    σ ∈ (1, 2). In this case, α1, α2 ∈ (1, 2]. Then

    $$\mathbf{E[}\left\vert \bar{\zeta}_{t}\right\vert^{2}]={\int}_{\left\vert y\right\vert \leq 1}\left\vert y\right\vert^{2}\pi \left( dy\right) t\leq Ct, $$

    and, by BDG inequality,

    $$\begin{array}{@{}rcl@{}} \mathbf{E[}\left\vert \tilde{\zeta}_{t}\right\vert^{\alpha_{2}}] &\leq &C \mathbf{E}\left[ \left( \sum\limits_{s\leq t}\left( {\Delta} \tilde{\zeta}_{s}\right)^{2}\right)^{\alpha_{2}/2}\right] \\ &\leq &C\mathbf{E}\left[ \sum\limits_{s\leq t}\left( {\Delta} \tilde{\zeta} _{s}\right)^{\alpha_{2}}\right] =Ct{\int}_{\left\vert y\right\vert >1}\left\vert y\right\vert^{\alpha_{2}}d\pi . \end{array} $$
  3. Case 3:

    σ = 1. In this case, α1 ∈ (1, 2] andα2 ∈ (0, 1). Similarly as above, we find that

    $$\begin{array}{@{}rcl@{}} \mathbf{E[}\left\vert \bar{\zeta}_{t}\right\vert^{2}] &=&t{\int}_{\left\vert y\right\vert \leq 1}\left\vert y\right\vert^{2}\pi \left( dy\right) \leq Ct, \\ \mathbf{E[}\left\vert \tilde{\zeta}_{t}\right\vert^{\alpha_{2}}] &\leq &Ct. \end{array} $$

    The statement is proved.

We need the following Gaussian moments estimates as well.

Lemma 18

LetakjR,k, j ≥  0, and

$$\left\vert \left\vert a\right\vert \right\vert =\left( \sum\limits_{k,j = 0}^{\infty }a_{kj}^{2}\right)^{1/2}<\infty . $$

and letζk, k ≥  0, be a sequence of independent standard normal r.v. Forp ≥ 1 set

$$\xi =\left( \sum\limits_{j = 0}^{\infty }\left( \sum\limits_{k = 0}^{\infty }\zeta_{k}a_{kj}\right)^{2}\right)^{p/2}. $$

Then there are constants 0 < c1 < c2so that

$$c_{1}\left\vert \left\vert a\right\vert \right\vert^{p}\leq \mathbf{E}\xi \leq c_{2}\left\vert \left\vert a\right\vert \right\vert^{p}. $$

Proof

  1. Case1.

    Let p ≥ 2. Since ζk are independent standard normal, by Minkowski inequality,

    $$\mathbf{E}\xi \leq \left( \sum\limits_{j = 0}^{\infty }\left[ \mathbf{E}\left( \left\vert \sum\limits_{k = 0}^{\infty }\zeta_{k}a_{kj}\right\vert^{p}\right) \right]^{2/p}\right)^{p/2}\leq C\left( \sum\limits_{j = 0}^{\infty }\sum\limits_{k = 0}^{\infty }a_{kj}^{2}\right)^{p/2}. $$

    On the other hand, by Hölder inequality,

    $$\mathbf{E}\xi \geq \left( \mathbf{E}\sum\limits_{j = 0}^{\infty }\left( \sum\limits_{k = 0}^{\infty }\zeta_{k}a_{kj}\right)^{2}\right)^{p/2}\geq c\left( \sum\limits_{j,k = 0}^{\infty }a_{kj}^{2}\right)^{p/2}. $$
  2. Case 2.

    Let p ∈ [1, 2). Then, by Hölder inequality,

    $$\begin{array}{@{}rcl@{}} &&\mathbf{E}\left[ \left( \sum\limits_{j = 0}^{\infty }\left( \sum\limits_{k = 0}^{\infty }\zeta_{k}a_{kj}\right)^{2}\right)^{p/2}\right] \\ &\leq &\left( \mathbf{E}\sum\limits_{j = 0}^{\infty }\left( \sum\limits_{k = 0}^{\infty }\zeta_{k}a_{kj}\right)^{2}\right)^{p/2}=\left( \sum\limits_{j,k = 0}^{\infty }a_{kj}^{2}\right)^{p/2}. \end{array} $$

    On the other hand, by Hölder and Minkowski inequality (recall ζk are independent standard normal),

    $$\begin{array}{@{}rcl@{}} &&\mathbf{E}\xi \geq \left[ \mathbf{E}\left( \sum\limits_{j = 0}^{\infty }\left\vert \sum\limits_{k = 0}^{\infty }\zeta_{k}a_{kj}\right\vert^{2}\right)^{1/2}\right]^{p} \\ &\geq &\left( \sum\limits_{j,k = 0}^{\infty }\left( \mathbf{E}\left\vert \zeta_{k}a_{kj}\right\vert \right)^{2}\right)^{p/2}\geq c\left( \sum\limits_{j,k = 0}^{\infty }a_{kj}^{2}\right)^{p/2}. \end{array} $$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mikulevičius, R., Phonsom, C. On the Cauchy Problem for Integro-Differential Equations in the Scale of Spaces of Generalized Smoothness. Potential Anal 50, 467–519 (2019). https://doi.org/10.1007/s11118-018-9690-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11118-018-9690-x

Keywords

Mathematics Subject Classification (2010)

Navigation