Skip to main content
Log in

On Measure Contraction Property without Ricci Curvature Lower Bound

  • Published:
Potential Analysis Aims and scope Submit manuscript

Abstract

Measure contraction properties M C P (K, N) are synthetic Ricci curvature lower bounds for metric measure spaces which do not necessarily have smooth structures. It is known that if a Riemannian manifold has dimension N, then M C P (K, N) is equivalent to Ricci curvature bounded below by K. On the other hand, it was observed in Rifford (Math. Control Relat. Fields 3(4), 467–487 2013) that there is a family of left invariant metrics on the three dimensional Heisenberg group for which the Ricci curvature is not bounded below. Though this family of metric spaces equipped with the Harr measure satisfy M C P (0,5). In this paper, we give sufficient conditions for a 2n+1 dimensional weakly Sasakian manifold to satisfy M C P (0, 2n + 3). This extends the above mentioned result on the Heisenberg group in Rifford (Math. Control Relat. Fields 3(4), 467–487 2013).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Agrachev, A., Lee, P.W.Y.: Generalized Ricci curvature bounds for three dimensional contact subriemannian manifolds. Math. Ann. 360(1-2), 209–253 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bakry, D., Émery, M.: Diffusions hypercontractives. In: Séminaire de probabilités, XIX, 1983/84, vol. 1123, pp 177–206. Springer (1985)

  3. Blair, D.E.: Contact Manifolds in Riemannian Geometry, Lecture Notes in Mathematics, vol. 509, 146pp

  4. Coulhon, T., Holopainen, I., Saloff-Coste, L.: Harnack inequality and hyperbolicity for subelliptic p-Laplacians with applications to Picard type theorems. Geom. Funct. Anal. 11(6), 1139–1191 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  5. Folland, G.B., Stein, E.M.: Hardy spaces on homogeneous groups, Mathematical Notes, vol. 28, p xii+285. Princeton University Press, Princeton (1982). University of Tokyo Press, Tokyo

    Google Scholar 

  6. Grigoryan, A.A.: The heat equation on noncompact Riemannian manifolds. (Russian) Mat. Sb. 182(1), 55–87 (1991). translation in Math. USSR-Sb 72(1):47–77 (1992)

    MathSciNet  Google Scholar 

  7. Jerison, D.: The Poincare inequality for vector fields satisfying the Hörmander condition. Duke Math. J 53, 503–523 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  8. Juillet, N.: Geometric inequalities and generalized Ricci bounds in the Heisenberg group. Int. Math. Res. Not. IMRN 13, 2347–2373 (2009)

    MathSciNet  MATH  Google Scholar 

  9. Kusuoka, S., Stroock, D.: Applications of the Malliavin calculus. III J. Fac. Sci. Univ. Tokyo Sect. IA Math 34(2), 391–442 (1987)

    MathSciNet  MATH  Google Scholar 

  10. Lee, P.W.Y., Li, C., Zelenko, I.: Ricci curvature type lower bounds for sub-Riemannian structures on Sasakian manifolds, preprint, arXiv:1304.2658, 25 pp (2013)

  11. Lee, P.W.Y.: Generalized Li-Yau estimates and Huisken’s monotonicity formula, arXiv:1211.5559, 25pp, submitted for publication (2013)

  12. Lee, P.W.Y.: Differential Harnack inequalities for a family of sub-elliptic diffusion equations on Sasakian manifolds. arXiv: 1302.3315, 27pp, submitted for publication (2013)

  13. Levin, J.J.: On the matrix Riccati equation. Proc. Amer. Math. Soc 10, 519–524 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  14. Lott, J., Villani, C.: Ricci curvature for metric-measure spaces via optimal transport. Ann. of Math. (2) 169(3), 903–991 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  15. Moser, J.: On Harnacks theorem for elliptic differential equations. Comm. Pure Appl. Math 14, 577–591 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  16. Moser, J.: A Harnack inequality for parabolic differential equations. Comm. Pure Appl. Math 17, 101–134 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  17. Moser, J.: On pointwise estimate for parabolic differential equations. Comm Pure Appl. Math 24, 727–740 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  18. Ohta, S.: On the measure contraction property of metric measure spaces. Comment. Math. Helv 82(4), 805–828 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  19. Ollivier, Y.: Ricci curvature of Markov chains on metric spaces. J. Funct. Anal 256(3), 810–864 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  20. Rifford, L.: Ricci curvatures in Carnot groups. Math. Control Relat. Fields 3 (4), 467–487 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  21. Royden, H.L.: Comparison theorems for the matrix Riccati equation. Comm. Pure Appl. Math 41(5), 739–746 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  22. Saloff-Coste, L.: A note on Poincaré, Sobolev, and Harnack inequalities. Internat. Math. Res. Notices 2, 27–38 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  23. Sturm, K.T.: On the geometry of metric measure spaces. Acta Math 196(1), 65–131 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  24. Sturm, K.T.: On the geometry of metric measure spaces II. Acta Math 196(1), 133–177 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  25. Villani, C.: Optimal transport. Old and new. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 338, p 973. Springer-Verlag, Berlin (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul W. Y. Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, P.W.Y. On Measure Contraction Property without Ricci Curvature Lower Bound. Potential Anal 44, 27–41 (2016). https://doi.org/10.1007/s11118-015-9496-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11118-015-9496-z

Keywords

Mathematics Subject Classification (2010)

Navigation