, Volume 22, Issue 2, pp 449–460 | Cite as

Handelman’s Positivstellensatz for polynomial matrices positive definite on polyhedra

  • Công-Trình Lê
  • Thị-Hòa-Bình Dư


In this paper we give a matrix version of Handelman’s Positivstellensatz (Handelman in Pac J Math 132:35–62, 1988), representing polynomial matrices which are positive definite on convex, compact polyhedra. Moreover, we propose also a procedure to find such a representation. As a corollary of Handelman’s theorem, we give a special case of Schmüdgen’s Positivstellensatz for polynomial matrices positive definite on convex, compact polyhedra.


Handelman’s theorem Pólya’s theorem Schmüdgen’s theorem Matrix polynomial Polynomial matrix Positivstellensatz Positive definite Standard simplex Polyhedron 

Mathematics Subject Classification

14P99 14Q99 14P10 52B99 15B48 



The authors would like to thank the anonymous referees for their useful comments and suggestions. They would also like to thank Dr. Ngo Lam Xuan Chau for his fruitful discussion to compute the kernel of the homomorphism \(M_\varphi \). Both authors are partially supported by the Vietnam National Foundation for Science and Technology Development (NAFOSTED) under Grant No. 101.01-2016.27.


  1. 1.
    Cimpric̆, J.: Strict Positivstellensätze for matrix polynomials with scalar constraints. Linear Algebra Appl. 434(8), 1879–1883 (2011)Google Scholar
  2. 2.
    Cimpric̆, J.: Real algebraic geometry for matrices over commutative rings. J. Algebra 359, 89–103 (2012)Google Scholar
  3. 3.
    Cimpric̆, J., Zalar, A.: Moment problems for operator polynomials. J. Math. Anal. Appl. 401(1), 307–316 (2013)Google Scholar
  4. 4.
    Handelman, D.: Representing polynomials by positive linear functions on compact convex polyhedra. Pac. J. Math. 132, 35–62 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Henrion, D., Lasserre, J., Loefberg, J.: GloptiPoly 3: Moments, Optimization and Semidefinite Programming.
  6. 6.
    Krivine, J.L.: Quelques propértiés des préordres dans les anneaux commutatifs unitaires. C. R. Acad. Sci. Paris 258, 3417–3418 (1964)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Lê, C.-T.: Some Positivstellensätze for polynomial matrices. Positivity 19(3), 513–528 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Marshall, M.: Positive Polynomials and Sums of Squares, Mathematical Surveys and Monographs. American Mathematical Society, Providence (2008)Google Scholar
  9. 9.
    Pólya, G.: Über positive Darstellung von Polynomen Vierteljschr. Naturforsch. Ges. Zürich 73, 141–145 (1928). In: Boas, R.P. (ed.) Collected Papers, vol. 2, pp. 309–313. MIT Press, Cambridge (1974)Google Scholar
  10. 10.
    Powers, V., Reznick, B.: A new bound for Pólya’s theorem with applications to polynomials positive on polyhedra. J. Pure Appl. Algebra 164, 221–229 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Prestel, A., Delzell, C.N.: Positive Polynomials—From Hilbert’s 17th Problem to Real Algebra. Springer, New York (2001)zbMATHGoogle Scholar
  12. 12.
    Savchuk, Y., Schmüdgen, K.: Positivstellensätze for algebras of matrices. Linear Algebra Appl. 43, 758–788 (2012)CrossRefzbMATHGoogle Scholar
  13. 13.
    Scherer, C.W., Hol, C.W.J.: Matrix sum-of-squares relaxations for robust semi-definite programs. Math. Program. 107(1–2), 189–211 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Schmüdgen, K.: The K-moment problem for compact semi-algebraic sets. Math. Ann. 289(2), 203–206 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Schweighofer, M.: An algorithmic approach to Schmüdgen’s Positivstellensatz. J. Pure Appl. Algebra 166(3), 307–319 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Zedek, M.: Continuity and location of zeros of linear combinations of polynomials. Proc. Am. Math. Soc. 16, 78–84 (1965)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of MathematicsQuy Nhon UniversityQuy NhonVietnam

Personalised recommendations